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Mobile Robot Task Planning
Driven by the increased use of mobile robotics for everyday
applications, there has been a flurry of research activity in
the pursuit of computationally efficient techniques for au-
tonomous decision making (Gerkey and Matarić 2004). The
automated planning and scheduling of tasks is of particular
interest to the artificial intelligence (AI) and robotics com-
munities, and considered a core competency of intelligent
behavior. As such, the development and integration of solu-
tion techniques for such reasoning is fundamental to the suc-
cessful design of autonomous mobile robots (Ghallab, Nau,
and Traverso 2004).

Automated task planning and scheduling has been previ-
ously studied in mobile robotics applications such as ware-
house management (Kim et al. 2003), hospital assistance,
and human care (Cesta et al. 2011). There are a variety
of existing solution methods, including those using math-
ematical programming techniques (Coltin, Veloso, and Ven-
tura 2011), customized interval-algebra algorithms (Mu-
drova and Hawes 2015), and forward-chaining temporal
planners (Louie et al. 2014).

In this work we investigate the application of
optimization-based scheduling technologies to such
robot task planning problems. Namely, we develop and
apply mixed-integer programming (MIP) and constraint
programming (CP) methods to solve two mobile robot task
planning problems from the literature. Furthermore, for the
second robot task planning problem, we integrate our CP
task planning approach on the mobile social robot, Tangy.

In the first problem, a robot plans a set of tasks each with
different temporal constraints dictating when a task is avail-
able for execution and when task execution must be com-
pleted. For this particular problem, the task planner must
determine a feasible plan that minimizes the sum of task
completion times. In the second mobile robot task planning
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problem, a socially-interacting robot must generate feasible
task plans while adhering to a number of restrictions, in-
cluding temporal constraints, the timetables of human users,
and robot energy levels. We model and solve each of these
problems with MIP and CP to find high-quality task plans.
For the second problem, we demonstrate the physicaly util-
ity of our methods by integrating our CP approach into a real
robot architecture. Eliminating the need for algorithmic de-
velopment, our model-and-solve techniques exploit ongoing
advances within MIP and CP and our experimental results
illustrate the promising nature of these general approaches
for mobile robot task planning problems.

Optimization Technologies

Combinatorial optimization problems have been historically
approached with a wide-range of methods including MIP
and CP. MIP is a mathematical programming approach that
models problems with continuous or integer variables whose
values are restricted by linear constraints and contribute to-
wards a global linear objective function. The approach com-
monly employs branch-and-bound tree search (Land and
Doig 1960) and often avoids worst-case exponential search
by solving the associated linear programming (LP) relax-
ation at each node to attain a bound on the objective and sys-
tematically prune subtrees. More sophisticated algorithmic
developments have been proposed over the years, resulting
in significant machine-independent speedups from the early
1990s to 2012 (Bixby 2012).

Conversely, CP is a rich approach that eschews structural
restrictions and is capable of modeling constraints and vari-
ables of a variety of forms. Developed primarily within the
AI community, CP focuses on the notation of global con-
straints to encapsulate frequently recurring combinatorial
substructure. Such global constraints are combined in CP
modeling and search effort is reduced through logical infer-
ence (Jaffar and Maher 1994) where each constraint has an
associated algorithm that performs domain filtering. Such
filtering removes values from variable domains that cannot
participate in global solutions, and is performed at each node
within the search. CP has also seen significant improvement
in recent decades and has established itself as a viable alter-
native to mathematical programming-based approaches.



Robot Task Planning Problems
We study two mobile robot task planning problems, each
requiring the autonomous assignment of start times to a set
of tasks while adhering to problem constraints.

Task Planning Problem #1 Given a set of n tasks, j ∈ J ,
each with a release time, rj , deadline time, dj , and process-
ing time, pj , the robot must find a feasible task plan, or de-
termine that none exist, over a planning horizon, H . Using
standard scheduling terminology, this problem can be repre-
sented as 1|rj , dj , δjk|

∑
j Cj , where 1 represents the single

robot, δjk defines the robot travel time between tasks j and
k, and

∑
j Cj is the objective function which minimizes the

sum of task completion times. Robot travel times are asym-
metric such that δjk 6= δkj may hold, and follow the triangle
inequality, namely δjl + δlk ≥ δjk. A solution task plan is
a set of start times for each task, {s1, s2, ..., sn}, such that
these times adhere to the temporal constraints of each task
(i.e. sj ∈ [rj , dj − pj ],∀j ∈ J), travel times are satisfied,
and the objective is minimized.

We propose both MIP and CP models for this problem.
Our disjunctive MIP model is defined by Eqs. (1) through
(6), and uses decision variable xjk :={1 if task j precedes
task k, and 0 otherwise}. In this model, Eqn. (1) is the
minimization objective function, (2) defines task completion
time, Eqs. (3) and (4) ensure a disjunctive relationship be-
tween all pairs of tasks, such that they do not conflict tem-
porally, and the remainder of the model identifies variable
domains.

min
∑

j Cj (1)

s.t. Cj = sj + pj , ∀j (2)
Cj + δjk ≤ sk + (H + δjk)(1− xjk), ∀j, k (3)
Ck + δkj ≤ sj + (H + δkj)(xjk), ∀j, k (4)
xjk ∈ {0, 1}, ∀j, k (5)
sj ∈ [rj , dj − pj ] ∀j (6)

Our CP model is defined by Eqns. (7) through (10), mak-
ing use of the NoOverlap global constraint (Laborie 2009)
in Eqn. (9) to prevent tasks from conflicting temporally in-
cluding travel times, where ∆ is the matrix of travel times
between all pairs of tasks, δjk. Eqn. (7) defines the objec-
tive function, Eqn. (8) completion time, and the remainder
identify varible domains.

min
∑

j Cj (7)

s.t. Cj = sj + pj , ∀j (8)
NoOverlap({s1, .., sn},{p1, .., pn},∆), (9)
sj ∈ [rj , dj − pj ] ∀j (10)

There have been previously proposed methods for solv-
ing this problem within the literature. Specifically, dynamic
user task scheduling (DUTS) (Coltin, Veloso, and Ventura
2011) introduces a pre-processing step that determines pairs
of tasks with overlapping time windows and adds constraints

similar to Eqs. (3) and (4) to a mathematical model be-
fore assigning start times via a MIP solver. An alternative
method uses task scheduling with interval algebra (TSIA)
(Mudrova and Hawes 2015) to heuristically order all pairs
of tasks before using also using MIP to solve the problem.
We note that each of these proposed methods are incom-
plete and not guaranteed to find a feasible solution if such
a task plan exists. For larger optimization problems, global
optimality may be unachievable within reasonable time, and
thus heuristic methods may be preferred. As such, within
our experimental analysis, we evaluate the solution-quality
vs. run-time tradeoff of the different methods.

Task Planning Problem #2 Given a single-day planning
horizon from 8:00AM to 7:00PM, the social robot Tangy
must plan and facilitate a set of activities (tasks) involv-
ing human users while reasoning about temporal constraints,
user timetables, and robot energy levels (Louie et al. 2014).
The activities consist of bingo games (involving multiple
users), bingo game reminders (involving a single user), and
robot recharge tasks. The participants, location, and pro-
cessing time of each task are known a priori, and the prob-
lem requires the robot to autonomously determine task start
times and, in the case of optional robot recharge tasks, task
presence and duration.

Each user has a timetable dictating when he/she is avail-
able, including mandatory breaks for meals from 8:00-
9:00AM, 12:00-1:00PM, and 5:00-6:00PM. The set of bingo
games and participants are parameters to the problem, and
the robot must perform a reminder task with each user prior
to his/her game. Robot travel times between any two lo-
cations are known, and a feasible task plan must account for
these required transitions. Instantaneous battery level for the
robot is available and must stay within pre-specified bounds.
Each task type has a unique energy consumption rate, and
optional robot recharge tasks allow for energy replenish-
ment; an upper bound of these is supplied to the model, and
they do not need to be utilized.

We solve this problem using both MIP and CP technolo-
gies, making use of continuous, integer, and binary deci-
sion variables within MIP and optional interval variables
(Laborie 2009) within CP to properly model task optional-
ity, in addition to a number of global constraints. Due to
space limitations, these models, as well as a more compre-
hensive problem description, are detailed elsewhere (Booth
et al. 2016). Prior to this work we proposed an approach
for solving this problem using a forward chaining temporal
planner (Louie et al. 2014), and we compare the results of
our proposed models to this temporal planner.

Implementation & Experimental Analysis
Due to the application-driven focus on quickly finding fea-
sible, high-quality task plans, we define algorithm perfor-
mance based on run-time and optimality gap (%). Our meth-
ods are implemented in C++ on a hexacore machine with a
Xeon processor and 12GB of RAM running Linux Ubuntu
14.04. We use the IBM ILOG CPLEX V12.6.2 Optimiza-
tion Studio, which includes both MIP and CP solvers.

Benchmark problem sets are generated as identified in the



journal version of this work (Booth et al. 2016), and the task
plan solutions for the second problem are simulated using
the Robot Operating System (ROS) (Quigley et al. 2009)
on custom-developed visualization software. To validate the
physical utility of our methods, the CP approach (best per-
forming) is implemented within a ROS-based architecture
on the mobile robot Tangy, using the GMapping technique
in OpenSlam (openslam.org) to create an environment map
via simultaneous localization and mapping.

Table 1 illustrates the MRE of the various approaches
over time for Problem #1. These values are calculated ac-
cording to the following expression: MRE(CP,P40,0.1) =

1
| ¯P40|

∑
p∈ ¯P40

c(CP,p,0.1)−c∗(p)
c∗(p) ×100, which would yield the

average MRE for the CP approach for all five problems with
40 tasks, P40, at a run-time duration of 0.1 seconds. In this
expression p ∈ ¯P40 is the set of 40 task instances where
feasible solutions were found at 0.1 seconds using CP. The
value c(CP, p, 0.1) is the best solution found by CP at this
run-time for problem instance p, and c∗(p) is the optimal so-
lution, if known, or best known bound attained by running
the MIP model for 18,000 seconds. If an approach failed to
find any feasible plans at a specified run-time, a value of ‘-’
is used. Values with a ‘†’ indicate that MRE was calculated
from the subset of instances for which the method found a
feasible plan at the associated run-time. ‘# Inf.’ identifies,
for a technique, the number of instances for which no feasi-
ble plan was found after 100 seconds.

The proposed CP approach is able to find better solutions
in shorter run-times than all other methods at nearly all time
points, and our proposed MIP model generally outperforms
existing MIP-based approaches. Furthermore, our methods
do not sacrifice algorithmic completeness like the DUTS and
TSIA methods, in part illustrated by the inability for the
TSIA method to improve upon its initial heuristic solution
and, in some cases, inability to find any feasible solutions.

Table 1: Problem #1: Mean relative error (%) over time
Run-time (s)

# Tasks Technique 0.1 1 10 100 # Inf.

40 CP 0.08 0.00 0.00 0.00 0
MIP 7.93 0.13 0.00 0.00 0
DUTS 13.10 0.06 0.02 0.02 0
TSIA 0.98 0.98 0.98 0.98 0

80 CP 0.32 0.15 0.10 0.10 0
MIP 9.02 1.38 0.11 0.11 0
DUTS 10.23 4.49 0.15 0.12 0
TSIA 0.45† 0.45† 0.45† 0.45† 2

120 CP 0.37 0.34 0.25 0.24 0
MIP 6.60† 3.67 0.25 0.25 0
DUTS 7.06† 4.48 0.28 0.25 0
TSIA 0.40† 0.40† 0.40† 0.40† 4

160 CP 0.33 0.30 0.23 0.22 0
MIP - 4.07 1.13 0.23 0
DUTS 4.74† 3.08 0.85 0.23 0
TSIA 0.33† 0.33† 0.33† 0.33† 4

200 CP 0.26 0.25 0.20 0.18 0
MIP - 3.56 1.63 0.18 0
DUTS 4.77 3.83 1.93 0.18 0
TSIA - - - - 5

Experimental results for the simulation of our proposed
methods for the second problem are illustrated in Table
2. Again, CP is the dominant performing algorithm, find-
ing feasible solutions much faster than the alternate meth-
ods. We note that though CP is by far the best approach
for this problem, both the CP and MIP optimization-based
technologies outperform the previously proposed forward-
chaining temporal planning approach that uses OPTIC (Ben-
ton, Coles, and Coles 2012), even though the feasibility-
focus of the problem favours the planning method over its
optimization-based counterparts.

Table 2: Problem #2: Time to first feasible plan
Scenario Technique

Users Bingo Games CP MIP OPTIC

4 1 < 0.01 0.01 0.54
8 2 < 0.01 0.36 9.13

12 3 0.04 1.30 13.09
16 4 0.01 - -
20 5 0.08 - -

As a proof of concept, we implement our CP-approach
in a real-world environment on the social robot, Tangy. We
used the first scenario for this physical implementation, con-
sisting of four users, one bingo game activity, and the as-
sociated reminder tasks. The results of this physical im-
plementation are detailed within (Booth et al. 2016). This
real-world experimentation is significant as it validates the
physical utility of our task planning methods in realistic en-
vironments.

Conclusions & Future Work

We explored the modeling and solving of two robot task
planning problems using optimization-based formalisms
mixed-integer programming (MIP) and constraint program-
ming (CP). The first problem involved the automated gen-
eration of feasible task plans that adhere to temporal con-
straints surrounding task release and deadline times. The
second problem required reasoning about task precedence
relationships, human user timetables, and robot energy con-
sumption and replenishment. We implemented our models
within simulated and real environments, comparing them
with previous methods and concluding that, for the problems
studied, the inference-based search of CP is the superior ap-
proach. Additionally, we implemented our CP approach for
the second problem on the social robot Tangy to validate the
physical utility of our methods.

Overall, our results indicate that these optimization-based
techniques are promising for solving mobile robot task plan-
ning problems, and a main direction for our future research
involves exploring the role of these methods for the devel-
opment of re-planning and plan repair techniques. We also
plan to further investigate robot task planning problems in
order to understand the point at which such problems will re-
quire more sophisticated methods, including problem-based
search manipulations and decompositions.



Acknowledgment
We would like to thank M. Schwenk for the design of the
simulation environment and S. Mohamed for the robot nav-
igation and mapping modules utilized in the experiments.

References
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In ICAPS, volume 77, 78.
Bixby, R. E. 2012. A brief history of linear and mixed-
integer programming computation. Documenta Mathemat-
ica, Extra Volume: Optimization Stories 107–121.
Booth, K. E.; Tran, T. T.; Nejat, G.; and Beck, J. C. 2016.
Mixed-integer and constraint programming techniques for
mobile robot task planning. Robotics and Automation Let-
ters, IEEE 1(1):500–507.
Cesta, A.; Cortellessa, G.; Rasconi, R.; Pecora, F.; Scopel-
liti, M.; and Tiberio, L. 2011. Monitoring elderly peo-
ple with the robocare domestic environment: Interaction
synthesis and user evaluation. Computational Intelligence
27(1):60–82.
Coltin, B.; Veloso, M. M.; and Ventura, R. 2011. Dynamic
user task scheduling for mobile robots. In Automated Action
Planning for Autonomous Mobile Robots, AAAI Workshops,
volume WS-11-09.
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