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Abstract. In manufacturing, different process designs give rise to differ-
ent schedules and with each an associated cost. In this paper, we report
on a real-life example where a manufacturing company wants to evalu-
ate the scheduling implications related to the degree of coupling between
their processes of moulding and casting, in terms of the amount of buffer
stock held. The results show that the present configuration could be im-
proved as regards the amount of stock, while still meeting the demand
levels. We show this as one example of a process design evaluation and
propose in this paper an architecture for generic process design for this
company, in order to evaluate quickly other scenarios. From this, we will
be able to develop an approach of proactively using scheduling informa-
tion in a systematic way to positively influence design decisions.

1 Introduction

Manufacturing environments are never static: technology becomes obsolete, de-
mands fluctuate, rapidly changing markets dictate the necessity to vary the
range of products, reduce inventory or deploy new resources and so on. Indeed,
agility [7] and adaptability [5] of a manufacturing enterprise are increasingly
pointed to as a key ingredient for long term economic success. A critical compo-
nent for making agility and adaptability a reality, is the ability to quickly assess
how changes to production processes, factory design and scheduling policies in-
fluence the efficiency of their production processes. A company needs to be able
to redesign its processes to try to match these new requirements in the environ-
ment, but it wants to have some insight into the impact of changes before they
are put in place. This introduces serious practical challenges to the company,
notably in production planning and scheduling.

Although there has been active research in the area of product design [9],
little or no published work has been carried out in how process design influences
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schedules. A design may introduce several constraints which until the schedul-
ing process happens, do not become apparent. Some previous research [8] has
addressed part of this question of the linkage between process design and schedul-
ing. The approach of [8] was such that if the scheduling problem is too difficult,
information about resource bottlenecks that often contribute to scheduling dif-
ficulty, is made available to the process planner. As a result, process plans can
be dynamically re-designed. Although that system allows the factory to react to
particular load characteristics of the current orders, it is not capable of reason-
ing about large-scale resource changes such as machine placement or existence
of storage facilities. Our long-term goal is to examine the broader strategic ques-
tion of making decisions that cannot be reactively modified, for example, due to
costs of stopping production to reconfigure the physical layout of the factory or
for reasons of similar nature. This paper is a first step in this direction.

We focus on a particular example of a set of changes that may be evaluated,
within an architecture that allows a manufacturer to realise scheduling insights
of their design choices. We then describe an implementation of this architecture
and present results of a preliminary empirical study.

The example is provided by a manufacturer of optical devices, who wants to
evaluate the scheduling implications related to the degree of coupling, in terms of
inventory held between the processes of moulding and casting. Multiple scenarios
needed to be explored, with different demand data sets. Such an evaluation would
require considerable time and scheduler resources to determine which is the best
configuration. Good quality schedules that are obtained and described in this
paper are subsequently evaluated by the user in terms of the company’s key
performance indicators. The indicators for this company are risk of low stock,
satisfying orders within time, resource utilisation and inventory costs.

The paper is organised as follows; section 2 provides a description of the
components making up the company’s manufacturing process. In section 3, the
different coupling scenarios are discussed. In section 4, we describe the models.
Section 5 introduces a general architecture according to which we implement
and solve the coupling problems. Section 6 then describes the experiments and
presents the results. Finally, section 7 derives conclusions and looks towards
further extensions within the architecture.

2 Manufacturing Process

The manufacturing process is aimed at producing optical devices of known types
in given quantities by the specified due dates. It includes two basic technological
steps; moulding followed by casting. Other stages such as inspection and pack-
aging are also present, but not considered significant to the scheduling. Between
these two processes there is a store holding completed moulds. Depending on
the level of content, this can allow casting to commence immediately without
waiting for moulds to be produced. How these two processes are carried out and
the intervening stock levels, determine the overall schedule and utilisation of the



moulding and casting machines. The various components of the manufacturing
process are described below.

2.1 Orders

Based on dynamic market analysis, the company derives quantities and types of
product that need to be produced over the next planning horizon. This informa-
tion is summarised in the form of orders.

2.2 Moulding

At the moulding stage, pairs of moulds are produced that determine the shape
of the product. Moulds of different types are made on mould injection machines
that operate in cycles. Each machine has a number of cavities. A cavity has its
own tooling that needs to be adjusted each time a mould of a different type
is produced on it. During such a changeover, all cavities on the machine halt.
Often though, the order level implies continuous production of one type of mould
throughout the planning horizon. The cycle time and changeover durations are
known in advance.

2.3 Casting

Casting is done using specialised casting machines. During a casting operation
two different types of mould are clamped together. Plastic is then injected be-
tween the moulds to produce a working device.

There is a technological delay between moulding and casting operations to
account for mould stabilisation.

2.4 Mould Store

Moulds are stored to minimise the risk of not being able to produce moulds in
time for casting and, consequently, of falling behind the due dates. The major
sources of risk are the uncertainty in demands and faulty raw material revealed
only at testing, after the casting process.

The inventory levels can be kept so as to continuously provide for casting for
a certain number of days. In the worst case, when moulding is not possible for
some unexpected reason, there always is a period of time that casting can still be
done by consuming existing mould inventory while problems with moulding can
be resolved. The main disadvantage of this approach is the cost of maintaining
the high inventory levels.

In Fig. 1, the possible linkage between the moulding and casting processes is
shown.
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Fig. 1. Alternative Manufacturing Process Flows.

3 The Coupling Problem

The company is interested in the degrees of coupling between moulding and
casting, to evaluate acceptable trade-offs between stock levels and schedule times.
Coupled processes are perceived to involve higher risks as they imply having less
mould inventory to react to unpredicted critical changes in the manufacturing
environment.

The evaluation of the schedule by the planners is primarily interested in
finding solutions that meet the weekly demand. At the same time, the company is
interested in other key indicators. Identifying and agreeing a single characteristic
to optimize with the company is difficult. Instead, we optimise on makespan and
from that, the planners can judge the quality of the schedule through their key
performance indicators, described previously.

The coupling scenarios being considered are as follows.

3.1 Scenario 1: Fully Decoupled Process

In this scenario, the company maintains high stock levels sufficient to cover all
demand within the planning horizon for immediate casting. Casting is temporally
independent of moulding, while the inventory is not exhausted. Casting consumes
stock, while moulding, in this case, is performed only to replenish stock. This
scenario represents the existing situation on the shop floor and is characterised
by a low risk of not meeting the due dates, but high associated storage costs.

3.2 Scenario 2: Fully Coupled Process

In this scenario, no stock is held between the moulding and casting processes. All
moulding is performed directly for casting. The moulds are kept in a temporary
buffer for a minimum period to attain stability and then supplied for casting. No
storage facilities are provided for moulds in this case, they are simply considered
as work in progress.



3.3 Scenario 3: Partially Coupled Process

In this scenario, the company holds some stock, but it is not enough to satisfy
all orders. There are three production flows, one from stock to casting, one from
moulding directly to casting and one from moulding to replenish stock. The
amount of moulds that need to be produced directly for casting is assumed to
be the difference of production volume and inventory levels over the planning
horizon.

4 Manufacturing Process Modelling

We present two models for the process coupling problem. One model is based on a
Constraint Programming approach while the other, on an Integer Programming
approach. Where the problem can be modelled as a set of linear constraints we
can use both approaches, otherwise CP is most convenient.

CP and IP are acknowledged to be competitive on certain problem classes [3].
It turns out that for the decoupled model it is possible to obtain a linear integer
formulation and thereby use an Integer Programming (IP) solver, such as Ilog
CPLEX [2, 6]. The decoupled model presents no temporal constraints between
the moulding and casting and so the problem can be decomposed and solved
separately.

4.1 Constraint-Based Models

The constraint-based approach to scheduling uses the notions of resources, ac-
tivities and temporal constraints as the modelling components [1]. Resources
have a capacity and represent either machines on the shop floor or inventory. An
activity is a manufacturing operation that has a start time and duration, and
that may or may not use resources. Activities are associated with the moulding
and casting processes. The number of activities is determined in advance based
on the maximum batch size. Unless we are considering a decoupled process,
moulding is followed by casting.

Each moulding activity requires exclusive use of a cavity on a moulding
machine for its entire duration. Likewise, each casting activity requires exclusive
use of a casting machine. Moulding cavities and casting machines are considered
individual resources of unary capacity that can be either idle or busy processing
an activity. Inventory of moulds and that of finished products are also modelled
as separate resources. The cavity or machine allocation is generally not known in
advance, neither is the time at which each activity takes place. This is determined
during the search. The model is represented in a CP modelling language as
follows:

moulding[i] requires (1) MouldingCavities

casting[i] requires (1) CastingMachines

where i is the activity index.



Casting must follow moulding after a sufficient technical delay and each pair
of moulds for casting are complete:

moulding pair1[i].end +Delay ≤ casting[i].start

moulding pair2[i].end +Delay ≤ casting[i].start

Moulding produces stock:

moulding[i] produces (amount[i]) MouldStock.

When casting commences, it removes mould stock and, on completion, puts
finished product into the finished product store:

casting[i] requires (amount[i]) MouldStock

casting[i] produces (amount[i]) ProductStock

A special purpose search is adopted which has been found in practice to find
good solutions quickly, with the data sets we have been using. This dynamic
strategy consists in allocating resources to activities, and setting start times
for the activities as follows. It first allocates resources to activities, ordered in
decreasing duration, in a round-robin fashion. It then selects the earliest start
time t of all activities and chooses an activity that can be scheduled at time t.
After that, it considers two alternatives: to schedule the activity at time t or to
postpone this activity. This is done for all activities that are not yet scheduled
or postponed. A postponed activity is reconsidered every time its start time is
updated during search.

4.2 IP-Based Model

The IP models for moulding and casting are similar. We model the manufacturing
process as a variant of the classical bin packing problem [4], where it is necessary
to determine how to put the most objects in the least number of fixed space bins.
In the case of moulding, each cavity is modelled as a bin with a capacity equal
to the schedule horizon. For casting it is similar with each casting machine a
separate bin. Each moulding or casting activity uses an amount of space in the
bin according to its duration. In contrast to the classical bin packing, instead of
the number of bins we are minimising here the sum of object sizes in a bin.

The difference between the IP models for moulding and casting is that in
moulding we have to take into account the time for changeovers between different
types of mould being made. Each moulding activity has a type associated with it
and we therefore keep track of the number of different types of moulds assigned
to each bin. We can then reassemble the activities in a bin ending up with the
least number of changeovers, without affecting the overall duration or utilisation
of the cavities. The IP model is described as follows.

Let there be n activities, m cavities, and l mould types. Let also

xij = 1, if activity i is assigned to cavity j

xij = 0 otherwise,

where i ∈ {1..n}, j ∈ {1..m}.



Let

yjk = 1, if cavity j produces mould type k

yjk = 0 otherwise,

where j ∈ {1..m}, k ∈ {1..l}.
Each activity can only be assigned to one cavity; therefore

m∑

j=1

xij = 1, ∀i ∈ {1..n}.

Consider that if activity i of type k is assigned to cavity j, then this cavity
processes this mould type:

yjk ≥ xij , ∀j ∈ {1..m}, ∀i ∈ {1..n},

where k is mould type of activity i. On the other hand, if cavity i does not
process mould type k, this cavity has no activities of type k:

yjk ≤
n∑

i=1

xij , ∀j ∈ {1..m}, ∀k ∈ {1..l}.

We now introduce an integer variable M to represent the makespan such that
the sum of activity durations and setup times S on each cavity is less than or
equal to it:

n∑

i=1

xij × duration[i] + (

l∑

k=1

yjk − 1) × S ≤ M, ∀j ∈ {1..m}.

5 Process Design Constraint-Based Architecture

To model and analyse the different process design scenarios, we develop a pro-
totype design workbench based on an architecture illustrated in Fig. 2. This
architecture is envisaged with many design alternatives.

An implementation of this allows different manufacturing process designs to
be evaluated through a flexible user interface on top of constraint-based solvers.
The core of the prototype is based around Microsoft Excel that stores the process
design components and configurations allowing them to be brought together in
appropriate ways. It also presents the results in a manner clear to the user,
in this case the manufacturing process planner. Excel as an interface medium
has the advantage that it is readily accepted as standard in many industrial
organisations. In addition, it has a sufficient level of functionality in statistical
analysis and representation of data.

Within the system, the process design is converted into an optimisation data
file and passed out to ILOG OPL Studio [6], a constraint-based problem solving
technology containing pre-compiled models. The choice between IP and CP-
based models is automated depending on the type of scheduling problem pre-
sented.



Machines

Performances
Numbers

Layout

Optimiser
Process
Design

Workbench

Data Model + Optimiser

Parameters

Pre-defined

models

Schedule + Key

Performance

IndicatorsDemand
Profiles

Inventory

Coupling

Initial levels
Capacities

User

M
achine

C
haracteristics

Demand

S
to

ra
g
e


C
h
a
ra

ct
e
ri
st

ic
s

Scheduling M
odel

Fig. 2. An architecture for manufacturing process prototyping.

6 Experiments

The various coupling scenarios were evaluated on three sets of weekly demand
data, which had already been scheduled and produced by the company. The
instances differed in the number of orders (2, 60 & 175), but they were approx-
imately the same in overall quantity of production. In all instances, the due
date for the orders was 7 days. For the partially coupled scenario, an amount of
stock equivalent to 3 days casting was used and for the fully decoupled model
an amount equivalent to 7 days was used. 0 days stock corresponded to the fully
coupled model. The interface and model allow any number of days stock to be
considered.

For comparison between scenarios, we consider that the moulding process
is finished when all moulds have been made including the 2 days stabilisation
delay. We also assume to be replenishing exactly as many moulds as we remove
for casting. In the case of the partially coupled or the decoupled scenario, we
also assume that we start the schedule with the moulds ready for casting, so
they have been there for a minimum of 2 days.

In practice, the company keeps buffer stock and so moulds are ready to
cast at all times. For that reason, the company views the results as excluding
the technological delay in moulding for stock (decoupled and partially coupled
scenarios), which may result in perceived makespans of up to 2 days shorter.
These ’company viewed’ results are also reported.



Stock, Data Set
days i ii iii

0 7.27 (7.27) 6.84 (6.84) 7.43 (7.43)
3 7.73 (5.73) 7.60 (5.60) 7.58 (5.58)
7 7.10 (5.10) 7.60 (5.60) 7.57 (5.57)

Table 1. CP model: Makespan, days (with buffer stock).

Stock, Data Set
days i ii iii

Moulding Casting Moulding Casting Moulding Casting

0 97.5% 84.9% 87.0% 90.5% 90.2% 83.1%
3 86.8% 84.8% 87.0% 79.2% 90.1% 83.4%
7 97.5% 99.3% 87.0% 99.5% 90.2% 90.3%

Table 2. CP model: Average Resource Utilisation.

The results of both models are presented below in terms of the overall
makespan, the resource utilisation and the release time of the final finished prod-
uct. Resource utilisation is measured as percentage of the machine hours used
over the total available machine hours within the duration of that process (cast-
ing or moulding). The CP model was used in all the coupling scenarios, while as
explained before, the IP model was used only for the decoupled processes.

In the experiments, we used ILOG OPL Studio 3.7 which contains both CP
and IP solvers. For the IP model, the solver was run with its default settings.

6.1 CP Model Results

In all the cases examined, a first solution was obtained within 5 minutes. The
CPU time limit was chosen to be 1800 seconds. The makespan reported covers
the overall duration from the start of the first activity to the end of the last
activity, which may be either a moulding or a casting activity. The results of the
CP model are shown in Tables 1, 2 & 3.

The results first show that orders were satisfied within seven days for all
scenarios except the coupled one. In the coupled case, the casting starts too

Stock, Data Set
days i ii iii

0 7.27 6.84 7.43
3 5.28 5.53 5.42
7 4.50 4.40 5.00

Table 3. CP model: Casting Finish Times, days.



late to achieve the order deadlines. The coupled process though has the shortest
makespan in two of the three cases. Here there is an efficient use of moulds and
a tight interaction between the processes. In the decoupled case, there is a two
day delay after the final moulding activity which dictates the overall makespan,
although the final product has already been produced. In terms of the buffer
results, which correspond more to the actual processes on the shop floor, we
see a different pattern with the de-coupled scenario coming out with a smaller
makespan. This though requires more stock to achieve.

The de-coupled scenario also provides better utilisation of both moulding
and casting resources across all three datasets.

The partially coupled scenario does not provide any compromise in terms of
makespan and utilisation. In a sense it has the worse of both worlds, there is
a delay in casting caused by waiting for moulds to become available after the
stock has been used up and also a delay at the end to achieve stabilisation of
moulds.

In Table 2 we see that for the partially coupled scenario, casting resource
utilisation degrees are lower than the respective figures for the fully coupled or
fully decoupled scenarios. This lower figure is due to a time gap.

Typical casting resource usage profiles are displayed in Figs. 3 to 5 for all
the three scenarios. In Fig. 3, casting does not start until the moulds are ready,
some time after the start of the overall schedule. In the partially coupled case,
Fig. 4, we can see casting both from stock and from the moulding process. In the
fully decoupled scenario, Fig. 5, resource utilisation is independent of moulding
and can start immediately from stock. For moulding, the profiles of utilisation
are more complex (Fig. 6). Among the moulding activities, those for casting are
scheduled first followed by those for stock. This strategy results in a short overall
makespan, but the utilisation in some cases goes down. We are in effect imposing
an ordering of moulding activities on a cavity such that moulding activities for
stock are always scheduled after those for casting, which may mean a less than
efficient allocation of resources, resulting in some long activities being scheduled
late.

A decomposed CP model is also available to use when the decoupled scenario
is detected. This gives the opportunity to optimise each process in isolation. The
results are reported in Tables 4 and 5.

The results confirm that the moulding process dictates the overall makespan
of the combined model. In this decomposed model it is now possible to improve
on the duration of casting. This is reflected in the slightly improved utilisation
of the casting resources in data set i.

6.2 IP Model Results

In Tables 6 and 7 we show the results of experiments on moulding and casting
within a decoupled scenario using an IP model and solver. The CPU time limit
was again 1800 seconds for every instance.

The results show a slight improvement over the equivalent CP decomposed
model, with reduced makespans and increased resource utilisation. With this



Fig. 3. Casting Resource Usage Profile, Fully Coupled Process.

Fig. 4. Casting Resource Usage Profile, Partially Coupled Process.

Fig. 5. Casting Resource Usage Profile, Decoupled Process.

Fig. 6. Moulding Resource Usage Profile, Partially Coupled Process.



Data Set Makespan, Average Resource
days Utilisation, %

i 7.10 (5.10) 97.5
ii 7.60 (5.60) 86.9
iii 7.57 (5.57) 90.2

Table 4. Decomposed CP model, Moulding: Decoupled Makespan and Utilisa-
tion.

Data Set Makespan, Average Resource
days Utilisation, %

i 4.50 99.4
ii 4.40 99.5
iii 5.00 90.3

Table 5. Decomposed CP model, Casting: Decoupled Makespan and Utilisation.

Data Set Makespan, Average Resource
days Utilisation, %

i 7.08 (5.08) 98.1
ii 7.58 (5.58) 87.5
iii 7.56 (5.56) 90.3

Table 6. IP Model, Moulding: Makespan and Utilisation.

Data Set Makespan, Average Resource
days Utilisation, %

i 4.48 99.7
ii 4.40 99.6
iii 5.00 90.3

Table 7. IP Model, Casting: Makespan and Utilisation.

set of data the approaches are essentially equivalent in real terms. However, on
other data sets it may be useful to keep this alternative model in consideration.

7 Conclusions and Future Work

In this paper, we attempt to develop an understanding of the relationship be-
tween manufacturing process design and quality of schedules on a small set of
real-world test examples. To do so, we propose a prototype architecture that
allows selecting and configuring various types of casting/moulding process. Here
we focused on one set of alternative designs, relating to the degree of coupling
between the two processes. This approach does not replace detailed scheduling
by an experienced scheduler. Instead we aim to produce good schedules in rea-



sonable time. These can then be compared to others in showing the relative
merits of different designs.

The results of our empirical study show that for the company, it is possible to
move to a lower level of inventory and still meet production demands. However,
this re-design comes at the cost of greater perceived risk. More generally, we
have verified in one case the usefulness of this architecture for evaluating process
designs of moulding and casting.

This architecture is capable of incorporating other design components. The
current prototype design workbench already has ideas directly from the com-
pany and from the literature. Therefore we are considering additional design
components including predefined routes or lines from moulding to casting ma-
chines, as this may be dictated by the layout of the shop floor or may be due
to compatibility of technical specifications between machines. We also consider
variable numbers of machines and performances. Furthermore, we will allow the
planner to pre-allocate part of the schedule by associating one order with a set
of three machines (2 moulding and 1 casting).
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