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Abstract
In the recent years, there has been significant work on the
difficulty of heuristic search problems, identifying different
problem instance characteristics that can have a significant
impact on search effort. Phase transitions in the solubility
of random problem instances have proved useful in the study
of problem difficulty for other classes of computational prob-
lems, notably SAT and CSP, and it has been shown that the
hardest problems typically occur during this rapid transition.
In this work, we perform the first empirical investigation of
the phase transition phenomena for heuristic search. We es-
tablish the existence of a rapid transition in the solubility of
an abstract model of heuristic search problems and show that,
for greedy best first search, the hardest instances are asso-
ciated with the phase transition region. We then perform a
novel investigation of the behavior of heuristics of different
strength across the solubility spectrum. Finally, we demon-
strate that the behavior of our abstract model carries over
to commonly used benchmark problems including the Pan-
cake Problem, Grid Navigation, TopSpin, and the Towers of
Hanoi. An interesting deviation is observed and explained in
the Sliding Puzzle.

1 Introduction
A recent line of research in heuristic search aims to develop
of an understanding of empirical problem difficulty. Several
factors affecting search effort have been identified including
the ratio of operator costs (Wilt and Ruml 2011), the corre-
lation between path cost and length (Wilt and Ruml 2012;
2015) and the existence of uninformed heuristic regions
(Xie, Müller, and Holte 2015).

The phase transition in problem solubility has been a
central tool in the study of problem difficulty for compu-
tational problems. In seminal work, Cheeseman, Kanef-
sky and Taylor (1991) empirically showed that several NP-
complete problems exhibit an abrupt phase transition from
underconstrained to overconstrained problems as a problem-
generation control parameter is varied, changing the proba-
bility of a solution from nearly zero to nearly one. They
discovered that the hardest problem instances occur during
this abrupt change.

Subsequently, the phase transition was extensively stud-
ied in problems including SAT (Mitchell, Selman, and
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Levesque 1992; Crawford and Auton 1996), CSP (Smith and
Dyer 1996; Prosser 1996), quantified boolean formula (Gent
and Walsh 1999), and classical planning (Bylander 1996;
Rintanen 2004). Interestingly, despite Cheeseman et al.’s
conjecture that the phase transition was relevant to a number
of AI problems, it does not appear to have been studied for
heuristic search problems.

In this work, we introduce the tool of phase transition to
heuristic search using an abstract model of a heuristic search
problem that is based on a random graph representation of
the state space. We demonstrate an abrupt transition in solu-
bility as a parameter controlling the density of the transitions
in the state space is varied and observe the accompanying
easy-hard-easy pattern of problem difficulty across the tran-
sition region. Building on these results, we make the follow-
ing further contributions:
• Exploiting our random graph model, we provide analyti-

cal bounds on the “mushy region” between the fully solu-
ble and fully insoluble problems.

• We demonstrate how to transfer the abstract graph model
to existing heuristic search benchmark problems, allow-
ing the generation of versions of each problem across the
phase transition and demonstrating both the phase transi-
tion and the easy-hard-easy pattern on the five standard
heuristic search benchmarks.

• We study the behavior of systematically stronger heuris-
tics across the phase transition region and show that the
reduction in search effort for strong heuristics is orders
of magnitude smaller for the hard soluble instances at the
phase transition than in the underconstrained regions.

2 Background
For many NP-complete problems, we can define a control
parameter for which a critical interval of values separates
two regions: one that is underconstrained with high den-
sity of solutions and one that is overconstrained with low
likelihood that a solution exists (Cheeseman, Kanefsky, and
Taylor 1991). Empirically, the hardest problems occur over
this critical interval. Mitchell, Selman and Levesque (1992)
identified a phase transition for critical values of the clause-
to-variable ratio of 3-SAT problems, with search effort peak-
ing at a ratio of approximately 4.27. Smith and Dyer (1996)
investigated phase transitions in CSPs and showed a phase



transition in problem solubility for critical values of con-
straint tightness. The hardest problems occurred during this
rapid transition with the median search effort peaking at the
point in which 50% of the problems are soluble. Many other
works through the late 1990s confirmed these results and ex-
tended them to other classes of problems.

For PSPACE-complete problems, Gent and Walsh (1999)
investigated the phase transition phenomenon on quantified
boolean formulae. They witnessed a clear phase transition
in solubility and an easy-hard-easy pattern associated with a
critical value of constrainedness. They therefore conjectured
that similar phase transition behavior will occur in other
PSPACE problems. In planning, Rintanen (2004) found a
transition in solubility as the operators-to-variables ratio is
varied. However, the effort peak was located earlier than ex-
pected and the analytical derivation of tight upper and lower
bounds for this transition remained an open problem.

The phase transition in heuristic search does not appear
to have been investigated. While a reference to heuristic
search occurs in an early work (Huberman and Hogg 1987),
the work actually concerns tree search and is therefore more
relevant to SAT and CSP rather than a best-first search.

3 Analytical Framework
In this section, we present the analytical framework we use
to investigate the phase transition in heuristic search.

3.1 Random Heuristic Search Problems
In search problems, the problem space is often represented
as a graph (Pohl 1970) with states as vertices and the tran-
sitions as edges. Given a finite state space S of cardinality
n: S = {s1, s2, ..., sn}, |S| = n, and a successor func-
tion Γ : S → 2S , we can use the following graph rep-
resentation (Pohl 1970): G〈V,E〉, V = {vi : si ∈ S},
E : {(vi, vj) : si, sj ∈ S, sj ∈ Γ(si)}.

Random Problem Space. With such a representation,
generating a random problem requires generating a ran-
dom graph with characteristics similar to the search space
of heuristic search problems (Erdős and Rényi 1959; Karp
1990; Barabási and Albert 1999; Watts and Strogatz 1998).

Common heuristic search problems often exhibit sym-
metric transitions (or have a similar distribution of in- and
out-degrees) along with other properties that can be well-
modeled by random graphs. For example, in the Sliding
Puzzle, the Pancake Problem, and the Rubik’s Cube, the
transition function is symmetric (∀i, j : si ∈ Γ(sj) ⇐⇒
sj ∈ Γ(si)), and most of the states have the same degree,
mapping to an undirected model with nearly constant degree
distribution. Grid Navigation and Vacuum World, in which
a cell is blocked with probability p, as well as other similar
problems, have a degree distribution centered around an ex-
pected degree that varies based on p. Map navigation prob-
lems, e.g. the Arad-Bucharest example (Russell and Norvig
2003), are often symmetric and have a different degree dis-
tribution for every map, with no specific structure.

As our focus is not on a specific class of problem, we use
the random digraph model (Karp 1990) as a general model.

While not committing to symmetry, it maintains an even dis-
tribution of in- and out-degrees and a Poisson degree distri-
bution centered around a certain degree. We expect this to be
a good general model for random heuristic search problems
and, in Section 5, we examine its applicability to real heuris-
tic search problems. When investigating a specific class of
problems, using a random graph model that better matches
the nature of the class may yield more precise results.

Random Problem Instances. Our model for generating
random problem instances is based on a random directed
transition graph, a randomly chosen initial state, and a ran-
domly chosen goal state. However, an important technical
consideration in problem generation is the avoidance of so-
called “flawed” models which include many trivially insol-
uble instances (Gomes and Walsh 2006). A naive instance
generator can easily generate instances for which either the
initial state or goal state has no out- or in-transitions, respec-
tively. While such instances do not form an asymptotically
dominant proportion of the instance space (Achlioptas et al.
2001), they can nonetheless be easily filtered. Therefore, we
propose the following problem generation model.

Model 1. Let n ∈ Z+ be the number of states in the problem
space S = {s1, s2, ..., sn} and p ∈ [0, 1] be the connectivity
density of the problem space. The class Qn,p consists of all
problem instances 〈T, Si, Sg〉 such that:

1. T is a random transition graph drawn from Dn,p, the
probability space of all random digraphs (Karp 1990).

2. Si ∈ S is a randomly chosen initial state such that
∃k 6= i : (Si, Sk) ∈ T .

3. Sg ∈ S is a randomly chosen goal state such that Sg 6= Si
and ∃k 6= g : (Sk, Sg) ∈ T .

As this model requires a minimal number of edges to pro-
vide sufficient variation, we arbitrarily consider instances
that have more than 1000 edges.

The Control Parameter. In our investigation, we use the
following control parameter:1

γ :=
Expected number of edges in the transition graph

Number of states

As the numerator is in the range of [0, n(n − 1)] (no self-
loops), then γ ∈ [0, n − 1]. When no edges exists (γ = 0),
no path between the initial and the goal states exists. When
all edges exist (γ = n−1), every potential path between the
initial and goal states is a feasible solution. As the expected
number of edges (and γ) increases, problems become less
constrained and the expected number of solutions increases.

The Region of the Phase Transition. While the phase
transition is asymptotically instantaneous, in finite problems
the region in which the probability that a problem is soluble
changes from nearly zero to nearly one is referred to as the
mushy region (Smith and Dyer 1996). The point in which
this probability is 0.5 is referred to as the crossover point
(Crawford and Auton 1996). Here, we define the mushy

1For digraphs, γ is equivalent to c, often used in the research on
phase transitions in random graphs (e.g., Karp (1990)).



region and the crossover point based on the observed pro-
portion of soluble problems as follows.

Definition 1. (Mushy region) The range of γ in which the
observed portion of soluble problems is between 0.1% and
99.9%.

Definition 2. (Crossover point) The γ value in which the
observed portion of soluble problems is 50%.

3.2 Search Algorithm
In our analysis, we use no-reopening, unicost greedy best-
first search (GBFS) (Doran and Michie 1966). Consistent
with all previous phase transition work of which we are
aware, this algorithm aims to find a feasible solution.

The Heuristic Function. To investigate the effect of γ on
search effort and whether an easy-hard-easy pattern emerges
in the phase transition region, we need to use a heuristic that
is general enough to apply to our abstract problems but that
also embodies useful search guidance. We therefore con-
sider the following set of heuristics H = {h0, h1, h2, ...},
based on c(x), the real cost from x to goal:

hi(x) =

{
c(x), if c(x) < i

i, otherwise

H is a set of admissible, increasingly informed heuristics.
h0 is the completely uninformed zero heuristic, h1 only in-
corporates information on the goal state, while hi incorpo-
rates information on states up to i − 1 steps away from the
goal. We note that ∀i < j : hj dominates hi, and since all
actions have the same cost, hj will have a higher rank corre-
lation with the true distance-to-go (Wilt and Ruml 2015).

These heuristic functions are admissible and consistent
and we expect they will demonstrate an easy-hard-easy pat-
tern as γ varies: in underconstrained problems, the goal state
or one of its close neighbors will be added to the open list
quickly, and expanded shortly thereafter; in overconstrained
problems, regardless of the heuristic, it should be easy to
exhaust the relatively small part of the problem space that is
accessible from the initial state; in the mushy region neither
of these easy cases will apply, requiring more effort to find
a path to the goal or to prove that none exists.

4 Results on the Abstract Model
4.1 Analytical Bounds on the Mushy Region
In the previous work on the phase transition, the mushy re-
gion has been defined, as above, using arbitrary thresholds
for the observed percentage of soluble instances. An imme-
diate benefit of our random graph model is that we can de-
rive bounds on the mushy region using the theory of random
graphs.

Two well-studied phenomena in random graphs are the
emergence of a giant component and the connectivity thresh-
old (Frieze and Karoński 2015). Let n be the number of
vertices in the digraph, p = γ

n be the connectivity density
and ω be a non-decreasing function such that ω(n)→∞ as
n → ∞. For γ < 1, all components of Dn,p are either sin-
gle vertices or components smaller than ω for any ω, and so

we expect the solubility in this region to be asymptotically
zero. For γ > lnn+ω

n , the graph is fully-connected, and we
expect the solubility in this region to be asymptotically one.
Therefore, we can use γ ≈ 1 and γ ≈ lnn

n as principled
bounds on the mushy region.

4.2 Empirical Results
Using our model for random problem generation Qn,p,
we carried out a series of experiments for n =
{10000, 100000, 1000000}, and for 35 γ values in
[0, n−1], non-uniformly distributed, with higher density
within the mushy region boundaries. For each value of n
and p, we generated 1000 random instances. For each in-
stance, we record whether or not a solution was found and
the number of nodes expanded in order to find a solution or
prove that no solution exists. We present results only for
n = 100000 as the other plots show the same behavior.

The Phase Transition. Figure 1a shows the probability
that a solution is found plotted against γ for 100K-state ran-
dom problems. As we increase γ, there is a clear phase tran-
sition in solubility. The observed mushy region is approx-
imately bounded by the analytical bounds, and as problem
size grows (not shown), these bounds become looser.

The Hardness of Problems. Figure 1b shows the median
(50%-percentile) search effort required to find a first solution
using h4 plotted against γ. There is a clear easy-hard-easy
pattern in search effort and the hard problems are associated
with the phase transition in solubility. The peak in search
effort is located in close proximity to the crossover point
(γ ≈ 1.65). These results are consistent with the behavior
observed for CSPs (Smith and Dyer 1996).

The hardest instances, however, do not occur near the
peak of the median search effort. Figure 1b also shows the
100%-percentile search effort which peaks close to the end
of the phase transition at the 99% solubility point. This can
be explained, based on our model. The insoluble instances
are the rare cases in which a very large giant component
is formed with an initial state inside the giant component
and a goal state outside. For a forward search, these are
the hardest instances to solve. We expect to find similarly
hard instances in the same region of high solubility for other
types of search. For a backward search, the hardest instances
will be the exact opposite, in which the goal state is inside
a large component and the initial state outside. For bidirec-
tional search, we expect the hardest instances to be those in
which two similarly large components are formed, with the
goal state in one and the initial state in another.2 The hardest
soluble instances are the rare cases of a very large giant com-
ponent that is still very sparsely connected, which requires
the search to exhaust most of it in order to find the solution.
While we might be able to significantly reduce the required
search effort for the hardest soluble instances using a bet-
ter heuristic function, the hardest insoluble instances require
exhausting the accessible portion of the state space to prove
infeasibility and cannot be eliminated or improved using a
different heuristic function.

2A different generator is required to generate such instances.
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Figure 1: Empirical results for the abstract model for 100K-state random instances.

Similar behavior of the median and 100%-percentile in-
stances have been observed by Gent and Walsh (1994a;
1994b) for different classes of SAT problems, including k-
SAT, and by Hogg and Williams (1994) for graph coloring.

The Impact of the Heuristic. While it is standard to use
instances across the phase transition to compare heuristic
quality (e.g., Gent et al. (1996a), McCreesh et al. (2016)), to
our knowledge, previous work has not studied the behavior
of a set of heuristics with a known, analytical quality ranking
(such as our, hi, heuristic family) across the phase transition.

Figure 1c shows the effort curve for h0, h1, ..., h4 for the
soluble random instances with 100K states. While for h0
there is no reduction at all as we move towards less con-
strained regions, h4 expands at the crossover approximately
65 times more nodes than at the end of the phase transition
(γ ≈ 4.75), and approximately 2,500 times more nodes than
at γ ≈ 20. Also, while h1 expands only twice the num-
ber of nodes expanded by h4 at the crossover, it expands
approximately 100 times more nodes at γ ≈ 4.75, and ap-
proximately 900 times more nodes at γ ≈ 20.

5 Empirical Results for Benchmarks
In this section, we evaluate the applicability of the results
of the abstract model to the analysis of existing heuristic
search benchmark problems. We do not expect to see the
exact phenomena observed on the abstract model because a
set of random variants of an existing problem will have a
much smaller variation than our abstract problem generator.
However, we expect to observe similar phenomena in close
proximity to their occurrence in the abstract model.

As with our study of heuristics of systematically differing
strength, we are unaware of phase transition work on other
problems that has attempted to directly apply the abstract
models of phase transition behavior to existing benchmarks.

5.1 Random Instance Generator
We propose a model for generating restricted or relaxed in-
stances of an existing heuristic search problem at varying
constrainedness level. We start by considering the transi-
tion graph induced by the problem’s state space and cre-

ate increasingly restricted or increasingly relaxed variants of
this graph by removing or adding edges. These variants are
proper subgraphs or supergraphs of the original transition
graph and the instances near the original constrainedness
level should have an almost identical connectivity structure.

Definition 3. (Observed connectivity density) Let G〈V,E〉
be an arbitrary transition graph. We define the observed
connectivity density of this graph P(G) = |E|

|V |·(|V |−1) .

Definition 4. (Restricted instance) Let G〈V,E〉 be an arbi-
trary transition graph. Ĝ〈V, Ê〉 is considered a restricted
instance of G if P(Ĝ) < P(G) and Ê ⊆ E.

Definition 5. (Relaxed instance) Let G〈V,E〉 be an arbi-
trary transition graph. Ĝ〈V, Ê〉 is considered a relaxed ver-
sion of G if P(Ĝ) > P(G) and Ê ⊇ E.

Our random model generates restricted or relaxed in-
stances of the original problem with the required connectiv-
ity density. Consistent with the abstract model, we eliminate
trivially insoluble instances.

Model 2. Given an existing problem’s transition graph
G〈V,E〉 and the required connectivity density p, the class
RG,p consists of all problem instances 〈T, Si, Sg〉 such that:

1. T , the transition graph, is a restricted instance of G if
p < P(G), or a relaxed instance otherwise. P(T ) = p.

2. Si ∈ S, a randomly chosen initial state, ∃k :(Si, Sk) ∈ T
3. Sg ∈ S, a randomly chosen goal state such that Sg 6= Si

and ∃k : (Sk, Sg) ∈ T
We use domain-specific heuristic functions to solve the

benchmark problems. It should be noted that these heuristics
remain admissible for the restricted instances but not for the
relaxed instances. However, admissibility is not required for
our analysis.

5.2 Benchmark Problems
In this section, we describe the empirical results for five
benchmark domains. In order to perform experiments with
thousands of random instances, we use relatively small ver-
sions of these problems.
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Figure 2: 8-Pancake Problem: Solubility and search effort
(50% and 100% percentile) plotted against γ (log-log scale).

The Pancake Problem. We consider the 8-Pancake Prob-
lem, for which the observed connectivity density is P =

8!·7
8!·(8!−1) = 7

8!−1 (γ ≈ 7). For p < P , we generate restricted
instances of the problem, in which some of the flip operators
are not allowed. For p > P , we generate relaxed instances,
in which there exist additional operators that do not corre-
spond to valid flip. We use hgap (Helmert 2010), a landmark
heuristic based on the number of gaps in the pancake stack.

Figure 2 shows the probability of a solution and the re-
quired search effort. There is a clear phase transition in sol-
ubility and the mushy region is bounded by the analytical
bounds. The median effort peaks near the crossover point
with the hardest problems near the end of the mushy region.
Since P is relatively high, we can see that restricting the
problem, does not immediately reduce the solubility. These
results are in agreement with our abstract model.

Grid Navigation. We consider a 150 × 150 Grid Navi-
gation Problem with 36% randomly chosen blocked cells,
solved using the Manhattan distance heuristic. We estimate
P ≈ 1.63 based on the observed average number of edges
in the transition graph of 1000 random instances.

Figure 3 shows the probability of solution and the re-
quired search effort. For the original problem, 85% of the
instances were soluble. The peak of the median effort is lo-
cated near the crossover point and the hardest problems are
located near the end of the phase transition. We can also see
that the mushy region is bounded by the analytical bounds.

Sliding Puzzle. For the Sliding Tile 8-Puzzle, we observe
a different behavior (Figure 4). In its original form, the
8-Puzzle is not always soluble if the initial and goal states
are randomly chosen because the state space consists of two
equal-sized connected components. Consequently, the sol-
ubility at the original constrainedness P is approximately
50%. Furthermore, the behavior in the near-P region is dif-
ferent. As the problem is relaxed, it immediately becomes
100% soluble, since every edge that connects the two large
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Figure 3: 150 × 150 Grid Navigation Problem: Solubility
and search effort plotted against γ (log-log scale).

components results in a fully connected state space. Alter-
natively, as we restrict the problem, the solubility does not
immediately decline, and remains approximately 50% for a
short range of γ, and the median effort therefore belongs
to either a soluble or insoluble instance. Due to the unique
structure of two large components, almost all the insoluble
instances in the near-P region require near-maximal effort,
as we have to exhaust one of the components. The result is
a very noisy median as shown in Figure 4. As we further
restrict the problem, the two large components break into
smaller components and the effort decreases.

It is interesting to observe that, unlike the other bench-
marks we have studied, the original state space of the 8-
Puzzle is harder than any restricted or relaxed version of it.

Other Benchmark Problems. Experiments on Towers of
Hanoi and TopSpin showed similar patterns to the Pancake
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against γ (log-log scale).



Problem and the Grid Navigation and were in agreement
with the abstract model. We omit their results due to space.

5.3 The Impact of the Heuristic Function
In order to evaluate the impact of the heuristic’s quality on
the search effort for existing heuristic search problems, we
carried out a series of experiments on the Pancake Problem.

We consider the original hgap heuristic (Helmert 2010),
and propose H ′gap = {h′gap0 , h′gap1 , h′gap2 , ...}, a set of par-
tial and increasingly stronger versions of hgap:

h′gapi (x) = hgap(bottom i pancakes in x)

For an n-Pancake problems, h′gap0 is the uninformed zero
heuristic, while h′gapn is the original hgap heuristic.

Figure 5 and Table 1 show the median effort for soluble
instances. Similar to the abstract model, the impact of a bet-
ter heuristic is much stronger outside of the phase transition.
h′gap8 is approximately 1.75 times better than h′gap2 at the
crossover point (γ ≈ 1.55), approximately 11.5 times better
at the end of the mushy region (γ ≈ 3.5), and approximately
69 times better at γ ≈ 60. Note the very small difference in
effort among {h′gapi |i > 0} at the crossover point with h′gap2

even expanding fewer median nodes than h′gap4 .

6 Discussion
The successful prediction of the behavior of the benchmark
problems indicates some structural properties of these prob-
lems are properly modeled by our abstract model. As all
these benchmark problems are essentially puzzles, their state
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Figure 5: 8-Pancake Problem: Search effort for soluble in-
stances using h′gap0 , h′gap2 , h′gap4 , h′gap8 (log-log scale).

γ value h′gap0 h′gap2 h′gap4 h′gap8

γ ≈ 1.55 10,647 1,715 1,921 981
γ ≈ 3.5 20,500 380 74 33
γ ≈ 20 19,798 352 21 6
γ ≈ 60 20,098 344 19 5

Table 1: 8-Pancake Problem: Median effort

space is symmetric, they have roughly the same number of
operators for every state, and they have one goal state. The
fact that the 8-Puzzle results do not match our abstract model
is due to a mismatch with the connectivity assumptions in
our model. The 8-Puzzle demonstrates interestingly differ-
ent behavior and the use of the phase transition framework
leads us to useful insights into the structure of the problem.

While the analytical bounds on the mushy region seem
to hold, even on the benchmarks, predicting the location of
the crossover remains an open question. For our model,
the number of solutions corresponds to the number of s-t
paths in a directed graph, a well-studied problem (Valiant
1979). According to the theory of constrainedness (Gent et
al. 1996b), the crossover can be predicted at the point where
the expected number of solutions is exactly one. Unfortu-
nately, calculation of the expected number of s-t paths in
random digraph remains an open problem with some poten-
tially useful estimation results (Roberts and Kroese 2007).

Our investigation also showed that the effort improvement
due to a more informed heuristic is much smaller for more
constrained problems, especially for problems inside the
phase transition – exactly the hardest problems. If we can
hope to generalize empirical comparisons of heuristics and
develop an understanding of problem difficulty for heuristic
search, we should, therefore, take into account the location
of the problem sets on the phase transition as is done, for
example, in CSPs (Gent et al. 1996a).

As a major direction of our future work, we will inves-
tigate the application of the results above to other heuristic
search algorithms such as cost-based GBFS and A*. Given
the interest in characteristics that correlate with problem dif-
ficulty noted in Section 1, we believe that an analysis based
on the phase transition will provide valuable insight.

7 Conclusion
We performed the first empirical analysis of the phase transi-
tion in heuristic search, focusing on greedy best first search.
Our results establish the existence of a rapid transition in the
solubility of heuristic search problems and the occurrence
of the hardest problems during this transition. These results
connect heuristic search to a variety of problems and body
of literature for which similar results have been obtained.

We also performed a novel investigation of the behavior
of systematically stronger heuristics across the phase tran-
sition region and showed that the benefit of more informed
heuristics is orders of magnitude smaller for hardest problem
instances (i.e., those at the phase transition).

Finally, we demonstrated the practicality of these results
by successfully predicting the behavior of restricted and re-
laxed versions of common benchmark problems. We believe
that this is the first time that phase transition analysis has
been applied to existing benchmark problems for any type
of problem.
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Frieze, A., and Karoński, M. 2015. Introduction to random
graphs. Cambridge University Press.
Gent, I. P., and Walsh, T. 1994a. Easy problems are some-
times hard. Artificial Intelligence 70(1):335–345.
Gent, I. P., and Walsh, T. 1994b. The hardest random SAT
problems. In KI-94: Advances in Artificial Intelligence,
355–366. Springer.
Gent, I. P., and Walsh, T. 1999. Beyond NP: the QSAT
phase transition. In The Sixteenth National Conference on
Artificial Intelligence (AAAI), 648–653.
Gent, I. P.; MacIntyre, E.; Presser, P.; Smith, B. M.; and
Walsh, T. 1996a. An empirical study of dynamic variable
ordering heuristics for the constraint satisfaction problem.
In International Conference on Principles and Practice of
Constraint Programming (CP’96), 179–193. Springer.
Gent, I. P.; MacIntyre, E.; Prosser, P.; and Walsh, T. 1996b.
The constrainedness of search. In The Thirteenth National
Conference on Artificial Intelligence (AAAI), 246–252.
Gomes, C., and Walsh, T. 2006. Randomness and structure.
In Rossi, F.; Van Beek, P.; and Walsh, T., eds., Handbook of
constraint programming. Elsevier. 639–664.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Third Annual Symposium on Combinatorial
Search (SoCS), 109–110.
Hogg, T., and Williams, C. P. 1994. The hardest constraint
problems: A double phase transition. Artificial Intelligence
69(1-2):359–377.
Huberman, B. A., and Hogg, T. 1987. Phase transi-
tions in artificial intelligence systems. Artificial Intelligence
33(2):155–171.
Karp, R. M. 1990. The transitive closure of a random di-
graph. Random Structures & Algorithms 1(1):73–93.

McCreesh, C.; Prosser, P.; and Trimble, J. 2016. Heuristics
and really hard instances for subgraph isomorphism prob-
lems. In The 25th International Joint Conference on Artifi-
cial Intelligence (IJCAI), 631–638.
Mitchell, D.; Selman, B.; and Levesque, H. 1992. Hard and
easy distributions of SAT problems. In The Tenth National
Conference on Artificial Intelligence (AAAI), 459–465.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3):193–204.
Prosser, P. 1996. An empirical study of phase transitions
in binary constraint satisfaction problems. Artificial Intelli-
gence 81(1):81–109.
Rintanen, J. 2004. Phase transitions in classical plan-
ning: An experimental study. In The Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), volume 2004, 101–110.
Roberts, B., and Kroese, D. 2007. Estimating the number
of s-t paths in a graph. Journal of Graph Algorithms and
Applications 11(1):195–214.
Russell, S. J., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Pearson Education, 2nd edition.
Smith, B. M., and Dyer, M. E. 1996. Locating the phase
transition in binary constraint satisfaction problems. Artifi-
cial Intelligence 81(1):155–181.
Valiant, L. G. 1979. The complexity of enumeration and
reliability problems. SIAM Journal on Computing 8(3):410–
421.
Watts, D. J., and Strogatz, S. H. 1998. Collective dynamics
of “small-world” networks. Nature 393:440–442.
Wilt, C. M., and Ruml, W. 2011. Cost-based heuristic search
is sensitive to the ratio of operator costs. In The Fourth An-
nual Symposium on Combinatorial Search (SoCS), 172–179.
Wilt, C. M., and Ruml, W. 2012. When does weighted
A* fail? In The Fifth Annual Symposium on Combinatorial
Search (SoCS), 137–144.
Wilt, C. M., and Ruml, W. 2015. Building a heuristic for
greedy search. In The Eighth Annual Symposium on Combi-
natorial Search (SoCS), 131–139.
Xie, F.; Müller, M.; and Holte, R. 2015. Understanding
and improving local exploration for GBFS. In The Twenty-
Fifth International Conference on Automated Planning and
Scheduling (ICAPS), 244–248.


