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Abstract. Parallel-batch machine problems arise in numerous manu-
facturing settings from semiconductor manufacturing to printing. They
have recently been addressed in constraint programming (CP) via the
combination of the novel sequenceEDD global constraint with the exist-
ing pack constraint to form the current state-of-the-art approach. In this
paper, we present a detailed analysis of the problem and derivation of a
number of properties that are exploited in a novel mixed integer program-
ming (MIP) model for the problem. Our empirical results demonstrate
that the new model is able to outperform the CP model across a range of
standard benchmark problems. Further investigation shows that the new
MIP formulation improves on the existing formulation primarily by pro-
ducing a much smaller model and enabling high quality primal solutions
to be found very quickly.

1 Introduction

Despite the widespread application of mixed integer programming (MIP) tech-
nology to optimization problems in general and scheduling problems specifi-
cally,1 there is a significant body of work that demonstrates the superiority of
constraint programming (CP) and hybrid approaches for a number of classes
of scheduling problems [1–5]. While the superiority is often a result of strong
inference techniques embedded in global constraints [6–8], it is sometimes due to
problem-specific implementation in the form of specialized global constraints [4]
or instantiations of decomposition techniques [1–3]. The flexibility of CP and de-
composition approaches which facilitates such implementations is undoubtedly
positive from the perspective of solving specific problems better. However, the
ability to create problem-specific approaches is in some ways in opposition to
the compositionality and model-and-solve “holy grail” of CP [9]: to enable users
to model and solve problems without implementing anything new at all.

Our overarching thesis is that, in fact, MIP technology is closer to this goal
than CP, at least in the context of combinatorial optimization problems. In
our investigation of this thesis, we are developing MIP models for scheduling

1 For example, of the 58 papers published in the Journal of Scheduling in 2012, 19 use
MIP, more than any other single approach.



problems where the current state of the art is customized CP or hybrid ap-
proaches. Heinz et al. [10] showed that on a class of resource allocation and
scheduling problems, a MIP model could be designed that was competitive with
the state-of-the-art logic-based Benders decomposition. This paper represents a
similar contribution in different scheduling problem: a parallel-batch processing
problem which has previously been attacked by MIP, branch-and-price [11], and
CP [4] with the latter representing the state of the art.

We propose a MIP model inspired by the idea of modifying a canonical fea-
sible solution. The definition of our objective function in this novel context is
not intuitive until we reason algorithmically about how constraints and assign-
ments interact – a strategy often used in designing metaheuristics. Indeed, we
suggest that the analogy between branching on independent decision variables
and making moves between neighbouring schedules should be explored in more
detail for a range of combinatorial problems.

In the next section we present the formal problem definition and discuss
existing approaches. In Section 3 we prove a number of propositions that allow
us to formally propose a novel MIP model for the problem in Section 4. Section
5 presents our empirical results, demonstrating that the performance of the new
model is superior to the existing CP model, both in terms of mean time to find
optimal solutions and in terms of solution quality when optimal solutions could
not be found within the time limit.

2 Background

Batch machines with limited capacity exist in many manufacturing settings in
forms such as ovens [12], autoclaves [4], and tanks [13]. In this paper, we tackle
the problem of minimizing the maximum lateness, Lmax, in a single machine
parallel batching problem where each job has an individual due date and size.

We use the following notation: a set J of n jobs is to be assigned to a set of
n batches B = {B1, . . . , Bn}. Batches can hold multiple jobs or remain empty.
Each job j has a processing time, pj , a size, sj , and a due date, dj . Jobs can
be assigned to arbitrary batches, as long as the sum of the sizes of the jobs in a
batch does not exceed the machine capacity, b.

The single machine processes one batch at a time. Each batch Bk has a batch
start date Sk, a batch processing time, defined as the longest processing time of
all jobs assigned to the batch, Pk = maxj∈Bk

(pj), and a batch completion date,
which must fall before the start time of the next batch, Ck = Sk + Pk ≤ Sk+1.

The lateness of a job j, Lj , is the completion time of its batch Ck less its
due date dj . The objective function is to minimize the maximum lateness over
all jobs, Lmax = maxj∈J (Lj). Since we are interested in the maximum lateness,
only the earliest-due job in each batch matters and we define it as the batch due
date Dk = minj∈Bk

(dj).

The problem can be summarized as 1|p-batch; b < n; non-identical|Lmax [4,
11], where p-batch; b < n represents the resource’s parallel-batch nature and



Fig. 1. An optimal solution to an example problem with eight jobs (values for sj and
pj are not shown for the two small jobs in batches 1 and 3, respectively).

its finite capacity. A version with identical job sizes was shown to be strongly
NP-hard by Brucker et al. [14]; this problem, therefore, is no less difficult.

Figure 1 shows a solution to a sample problem with eight jobs and resource
capacity b = 20. The last batch has the maximum lateness L5 = C5 − D5 =
70− 39 = 31.

2.1 Reference MIP model

The problem is formally defined by MIP Model 2.1, used by Malapert et al. [4]
for comparison with their CP model (see below).

Min. Lmax (1)

s.t.
∑
k∈B

xjk = 1 ∀j ∈ J (2)

∑
j∈J

sjxjk ≤ b ∀k ∈ B (3)

pjxjk ≤ Pk ∀j ∈ J ,∀k ∈ K (4)

Ck−1 + Pk = Ck ∀k ∈ B (5)

(dmax − dj)(1− xjk) + dj ≥ Dk ∀j ∈ J ,∀k ∈ B (6)

Ck −Dk ≤ Lmax ∀k ∈ B (7)

Dk−1 ≤ Dk ∀k ∈ B (8)

xjk ∈ {0, 1}, Ck ≥ 0, Pk ≥ 0, Dk ≥ 0 ∀j ∈ J ,∀k ∈ B (9)

Model 2.1. Reference MIP model

The decision variables, xjk, are binary variables where xjk = 1 iff job j is
assigned to batch k. Constraints (2) ensure that each job j is assigned to exactly
one batch k. Constraints (3) ensure that no batch exceeds the machine capacity,



b. Constraints (4) define each batch’s processing time, Pk, as the maximum pro-
cessing time of the jobs j assigned to it. Constraints (6) implement the definition
of Dk while ensuring that for empty batches k, Dk = dmax. Constraints (5) define
each batch’s completion time, Ck, as that of the previous batch, plus the batch’s
processing time. Constraints (7) define the objective value Lmax. Constraints
(8) sort the batches by due date, based on a well-known dominance rule: there
exists an optimal solution with batches scheduled in earliest-due-date-first order
(EDD). This stems from the fact that if all jobs are already assigned, the problem
reduces to a polynomial-time solvable single machine problem (1|Dk|Lmax) [15].

2.2 Previous Work

Malapert et al. [4] present a CP formulation of the problem (see Model 2.2)
which relies on two global constraints: pack [16], which constrains the job-to-
batch assignments such that no capacity limits are violated, and sequenceEDD,
which enforces the EDD order over the batches. The implementation of the latter
constraint is the main contribution of the paper and is primarily responsible for
the strong performance. sequenceEDD includes a set of pruning rules that update
the lower and upper bounds on Lmax and on the number of batches. Based on
these bounds, other assignments are then eliminated from the set of feasible
assignments.

Min. Lmax (10)

s.t. maxOfASet(Pk, Bk, [pj ]k, 0) ∀k ∈ B (11)

minOfASet(Dk, Bk, [dj ]k, dmax) ∀k ∈ B (12)

pack(Bk, Aj , Sk,M, sj) (13)

sequenceEDD(Bk, Dk, Pk,M,Lmax) (14)

Model 2.2. CP model proposed by Malapert et al.

Constraints (11) define Pk as the maximum of the set of processing times [pj ]k
belonging to the jobs assigned to batch Bk, with a minimum value of 0 (note
that the notation is adapted from Malapert et al. to match that in this paper).
Constraints (12) define Dk as the minimum of the due dates [dj ]k associated with
the set of jobs assigned to the batch Bk, with a maximum of dmax, the largest
due date among all given jobs. Constraint (13) implements the limited batch
capacity b. It uses propagation rules incorporating knapsack-based reasoning, as
well as a dynamic lower bound on the number of non-empty batches M [4, 16].
Note that this constraint handles the channeling between the set of jobs assigned
to batch Bk, and the assigned batch index Aj for each job j. The limited capacity
is enforced by setting the domain of the batch loads, Sk, to [0, b]. Constraint (14)



ensures that the objective value Lmax is equal to the maximum lateness of the
batches scheduled according to the EDD rule.

The problem has also been addressed with a detailed branch-and-price algo-
rithm [11], which is described in [4] as follows: each batch is a column in the
column generation master problem. A solution of the master problem is a fea-
sible sequence of batches. The objective of the subproblem is to find a batch
which improves the current solution of the master problem. Malapert et al. [4]
showed that their CP model was significantly faster than the branch-and-price
algorithm which itself was more efficient than the reference MIP model.

Other authors have examined similar problems: Azizoglu & Webster [17]
provide an exact method and a heuristic for the same problem, but minimize
makespan (Cmax) instead of Lmax, similar to the work by Dupont and Dhaenens-
Flipo [18]. Exact methods have been proposed for multi-agent variants with dif-
ferent objective functions by Sabouni and Jolai [19], for makespan minimization
on single batch machines by Kashan et al. [20], and for makespan minimization
on parallel batch machines with different release dates [21]. An extensive review
of MIP models in batch processing is given by Grossmann [13].

3 Exploiting the Problem Structure

In this section, we make a series of observations about the parallel-batch schedul-
ing problem that allow us to develop a novel MIP formulation.

3.1 The single-EDD schedule and assigning jobs to earlier batches

We can exploit the EDD rule to eliminate 1
2 (n2−n) of the n2 potential job-batch

assignments a priori.
We first re-index all jobs in non-decreasing due date (and in non-decreasing

processing time in case of a tie). For the remainder of this paper, consider all jobs
to be indexed in this way. We then define the single-EDD schedule, in which each
batch Bk contains the single job j matching its index (i.e., xjk = 1 iff j = k),
such that EDD is always satisfied. We refer to j as the host job of batch Bk,
while other jobs assigned to Bk, if any, are guest jobs.

Lemma 1. Consider a schedule S in which Bk is the earliest-scheduled batch
such that its host job j is assigned to a later-scheduled batch Bk+m. In this
schedule, Bk is either empty or Dk = dj (even though j /∈ Bk).

Proof. If Bk is non-empty, Dk ≥ dj : since Bk is defined as the earliest scheduled
batch whose host job is scheduled later, Bk cannot host jobs due before dj . But
if Dk > dj then EDD is violated, as Dk+m = dj . Thus, Bk is empty, or Dk = dj
(due to other jobs with due date equal to dj assigned to Bk). ut

Proposition 1. There exists an optimal solution in which job j is assigned to
batch Bk, j ≤ k.



Proof. Consider again schedule S. Since Dk+m = dj , EDD requires that no batch
Bq, k ≤ q < k + m, is due after dj . By Lemma 1, we only need to consider the
following two cases:

1. Bk is empty, so Pk = 0. Since EDD is not violated, we know that Dq =
dj ∀ Bq, k ≤ q ≤ k + m. We can assign all jobs from Bk+m to Bk, such
that Pk+m = 0. Lmax will stay constant, as the completion time of the last-
scheduled of all batches due at dj does not change.

2. Bk is non-empty and due at Dk = dj (although j /∈ Bk), due to at least
one job g from a later-scheduled batch for which dg = dj , which is assigned
to Bk. In this case, since Dk = dj = Dk+m and since EDD is not violated,
all batches Bq where k ≤ q ≤ k + m must be due at dj . But then we can
re-order these batches such that their respective earliest-due jobs are once
again assigned to their single-EDD indices. The jobs in Bk+m (including j)
will be assigned to Bk as a result. Lmax is not affected by this re-assignment,
as the completion time of the last-scheduled batch due at dj does not change.

ut

We thus introduce the following constraint to exclude solutions in which jobs
are assigned to later batches than their single-EDD batches.

xjk = 0 ∀{j ∈ J , k ∈ B|j < k} (15)

We can also show that in every non-empty batch Bk, the earliest-due job j
must be the host job. This means that when batch Bk’s host job is assigned to
an earlier batch, no other jobs can be assigned to Bk; a batch that is hostless
must be empty. This requirement rests on the following proposition.

Proposition 2. There exists an optimal solution that has no hostless, non-
empty batches.

Proof. Consider an EDD-ordered schedule in which batch Bj is the last-scheduled
batch which is hostless but non-empty: instead of its host job, only a set G of
later-due guest jobs is assigned to Bj (j /∈ G).

The earliest-due job g ∈ G must have the same due date as batch Bj+1: if it
is due later, EDD is violated; if it is due earlier, G is not a set of later-due guest
jobs. Job g’s own host batch Bg (which is hostless) cannot itself be due later
than dg = Dj+1 – this would require Bg to have guest jobs from later batches,
but we defined Bk as the last batch with this property – therefore, Dq = Dj+1

for all batches Bq, j ≤ q ≤ g.
Then we can re-assign the guest jobs G from Bj into Bg, such that g is again

host job in its own single-EDD batch. This re-assignment has no impact on Lmax

since it makes Pj = 0, resulting in the same completion time of the set of all
batches with batch due date D = Dj+1. ut

The above proposition translates to the following constraint:

xkk ≥ xjk ∀{j ∈ J , k ∈ B|j > k} (16)



This observation allows us to define the due date of all batches to be the due
date of their respective host jobs: Dk = dj , ∀{j ∈ J , k ∈ B|j = k}. This rule
holds even for empty batches Bk: Pk = 0, so Ck = Ck−1; but Dk−1 ≤ Dk due to
this rule, so Lk−1 ≥ Lk and thus Lk has no impact on Lmax.

3.2 Reformulating the objective function

We can formulate each batch’s lateness, Lk, as its lateness in the single-EDD
schedule, modified by the assignment of jobs into and out of batches Bh, h ≤ k.

We first define B? ⊆ B as the set of batches Bk which, given any EDD
schedule, are the last-scheduled among all batches with due date Dk, since we
can make the following observation.

Proposition 3. Given a set of batches with equal due date in a schedule, we
only need to consider the lateness of the one scheduled last.

Proof. In an EDD ordering, the lateness of the batch scheduled last is greater
than (or equal to, in the case of an empty batch) the lateness values of all other
batches sharing its due date as it has the latest completion date. ut

This fact allows us to reduce the number of constraints defining Lmax, as we
only need to consider batches B? as potential candidates for Lmax.

To simplify the following exposition, we define the term move as the re-
assignment of a job j from its single-EDD batch Bk to an earlier batch Bh, h < k,
such that xjk = 0 and xjh = 1 and j is a guest job in Bh. Any schedule can
thus be understood as a set of such moves, executed in arbitrary order starting
from the single-EDD schedule. To define the objective function, we consider the
change in Lmax associated with individual moves.

Consider any EDD schedule, such as the one in Figure 2(a). Moving a job j
from its single-EDD batch Bk=j into an earlier batch Be has the following effect:

– the lateness of all batches Bi, i ≥ k is reduced by pj (Figure 2(b)),
– the lateness of all batches Bh, h ≥ e is increased by max(0, pj − Pe), where

Pe is the processing time of batch Be before j is moved into it (Figure 2(c)).

In any batch, only the host job’s lateness is relevant to Lmax. In other words,
the lateness of batch Bk equals the lateness of job j = k, unless the job was
moved into an earlier batch (in which case Pk = 0 due to Proposition 2 and
Lk = Lk−1). Therefore, we can understand the lateness of batch Bk as its lateness
in the single-EDD schedule, written as Lk,single, modified by the summed effect
that all moves of other jobs into and out of batches h ≤ k have on the completion
time of Bk:

Lk = Lk,single +
∑
h≤k

P ′h − ph(2− xhh)︸ ︷︷ ︸
Th

∀k ∈ B? (17)

P ′k ≥ pjxjk ∀{j ∈ J , k ∈ B|j ≥ k} (18)

P ′k ≥ pj ∀{j ∈ J , k ∈ B|j = k} (19)



Fig. 2. Moving a job in a single-EDD schedule. Job 5 (marked “p5 = 10”) is moved
from its single-EDD batch 5 into the earlier batch 3. This changes the lateness of job
7 (marked ?) from L7,single to L7,single − 10 + 6 = L7,single − 4.

where P ′k = max(Pk, pk)∀k ∈ B as defined in constraints (18) and (19).
For every batch Bk ∈ B?, consider the possible scenarios for all batches

Bh, h ≤ k:

– Batch Bh holds its host job. Then xhh = 1 and the summand Th evaluates
to P ′h − ph. If Bh has guest jobs, then P ′h − ph > 0 if any of them are longer
than the host job; if all guests are shorter, P ′h = ph and Th = 0.

– Batch Bh is hostless and thus empty. We require Th = −ph in accordance
with Figure 2(b). To achieve this, we state in constraints (19) that P ′h never
drops below the length of its host job, even when Ph = 0. With this in effect,
the minimization objective enforces P ′h = ph and Th = P ′h − 2ph = −ph.

Thus, we add to Lk the increase in processing time due to guests, max(0, P ′h−ph),
for every non-empty batch Bh. We subtract from Lk the host job processing time
ph for every empty batch Bh. This is congruent with Figure 2 above.

The net sum of these additions and subtractions to and from Lk,single adjusts
the lateness of batch k to its correct value given the values of xjk.

Proposition 4. Constraints (17)–(19) correctly define Lk for each batch Bk.

Proof. By induction on k, our base case is the lateness of the first batch (k =
1). It is clear that the lateness of Bk is equal to its single-EDD lateness, plus
max(P1 − p1, 0) since guest jobs may cause P1 > p1:

L1 = L1,single + P ′1 − p1(2− x11)︸ ︷︷ ︸
=max(P1−p1,0)

. (20)

Our induction hypothesis is that the proposition holds for any batch Bk:

Lk = Lk,single +
∑
h≤k

P ′h − ph(2− xhh) (21)



To show how an expression for Lk+1 then follows, we relate Lk+1 to Lk:

Lk+1 = Lk + Pk+1︸ ︷︷ ︸
Ck+1−Ck

− (dk+1 − dk)︸ ︷︷ ︸
Dk+1−Dk

(22)

The difference Lk+1 − Lk can also be written in terms of single-EDD lateness
values and processing time adjustments due to guests or hostlessness, all of which
are expressed in known terms:

Pk+1−(dk+1−dk) = Lk+1,single−Lk,single+

{
max(Pk+1 − pk+1, 0) xk+1,k+1 = 1

−pk+1 xk+1,k+1 = 0
.

(23)
The conditional expression is equivalent to P ′k+1 − pk+1(2 − xk+1,k+1). We can
now rewrite (22) for Lk+1 and arrive at

Lk+1 =

Lk,single +
∑
h≤k

P ′h − ph(2− xhh)


+ Lk+1,single − Lk,single + P ′k+1 − pk+1(2− xk+1,k+1), (24)

which, after cancelling out Lk,single terms, becomes

Lk+1 = Lk+1,single +
∑

h≤k+1

P ′h − ph(2− xhh) (25)

and agrees with (21). Since (25) follows from (21), and the latter is true for the
base case of k = 1, (17) is true for all k. ut

Note also that in the case of an empty batch Bk ∈ B?, if Bk−1 /∈ B?, dk =
dk−1 and xkk = 0, so Lk = Lk−1 as evident from (24); if Bk−1 ∈ B?, dk > dk−1,
and thus Lk < Lk−1. as dk = dk−1 and xkk = 0 if Bk is empty.

3.3 Additional lazy constraints

Lazy constraints [22] are also used in the model. Lazy constraints are constraints
based on the specific problem instance. Large numbers of them are generated
prior to solving, but they are not immediately used in the model. Instead, they
are checked against whenever an integral solution is found, and only those that
are violated are added to the LP model. In practice, only few of the lazy con-
straints are used in the solution process. Nevertheless, they can noticeably im-
prove solving time in some cases.

Symmetry-breaking rule This rule creates an explicit, arbitrary preference
for certain solutions. Consider two schedules S1 and S2. Both schedules contain
batches Bh and Bk, both of which are holding their respective host jobs only.



Two jobs j and i are now assigned as the only guests to the two batches; further-
more max(pi, pj) ≤ min(ph, pk), max(sh, sk) + max(sj , si) ≤ b and min(dj , di) ≥
max(dh, dk). If j ∈ Bh and i ∈ Bk in schedule S1 and vice versa in S2, then the
constraint renders S2 infeasible.

2(4− xhh − xkk − xjh − xjk − xih − xik

+
∑
g

g 6=j
g 6=i

(xgh + xgk)) ≥ xjk + xih

∀{j, i ∈ J ,
h, k ∈ B

| h < k < j < i∧
[pq ≤ pr ∧ b− sr ≥ sq

∀q ∈ {j, i},
∀r ∈ {h, k}]}

(26)

The left-hand side of the equation evaluates to zero exactly when the above
conditions are met, which in turn disallows the assignment given on the right.
For all other job/batch pairings, the left side evaluates to at least two, which
places no constraint on the right hand side.

This kind of symmetry-breaking rule can be extended to m > 2 batches,
with the number of constraints growing combinatorially with m. Since it takes
a constant but appreciable time to generate these constraints prior to solving,
we have in our trials kept to the simplest variant shown here, and limited their
use to problem instances with n ≥ 50 jobs.

Dominance rule on required assignments A schedule is not uniquely opti-
mal if a job j is left in its single-EDD batch although there is capacity for it in
an earlier batch. This constraint can be expressed logically as: if a job j can be
safely assigned to Bk without violating the capacity constraint, then j must be
assigned to any earlier batch, or Bk must be empty (or both).

The left side of the above if-then statement is written as (1.0 + b − sj −∑nj

i=k
i 6=j

sixik)/b, which evaluates to 1.0 or greater iff sk plus the sizes of guest jobs

in k sum to less than b− sj . The constraint is written as follows:

2− xjj − xkk ≥

1.0 + b− sj −
nj∑
i=k
i 6=j

sixik

 /b

∀{j ∈ J , k ∈ B
|j > k ∧ pk ≥ pj

∧sk + sj ≤ b}
(27)

As with the rule above, we have found that only more difficult problems with
n ≥ 50 benefit from these constraints.

4 A New MIP Model

The full novel MIP model we are proposing is defined in Model 4.1.



Min. Lmax (28)

s.t.
∑
k

xjk = 1 ∀j ∈ J (29)∑
j

sjxjk ≤ b ∀k ∈ B (30)

P ′k ≥ pjxjk ∀{j ∈ J , k ∈ B|j ≥ k} (31)

P ′k ≥ pj ∀{j ∈ J , k ∈ B|j = k} (32)

xkk ≥ xjk ∀{j ∈ J , k ∈ B|j > k} (33)

Lmax ≥ Lk,single +
∑
h≤k

P ′h − ph(2− xhh) ∀k ∈ B? (34)

xjk = 0 ∀{j ∈ J , k ∈ B|j < k} (35)

(∗)

2(4− xhh − xkk − xjh − xjk − xih − xik

+
∑
g

g 6=j
g 6=i

(xgh + xgk)) ≥ xjk + xih

∀{j, i ∈ J ,
h, k ∈ B

| h < k < j < i∧
[pq ≤ pr ∧ b− sr ≥ sq

∀q ∈ {j, i},
∀r ∈ {h, k}]}

(36)

(∗) 2− xjj − xkk ≥

1.0 + b− sj −
nj∑
i=k
i 6=j

sixik

 /b

∀{j ∈ J , k ∈ B
|j > k ∧ pk ≥ pj

∧sk + sj ≤ b}
(37)

Model 4.1. The new MIP model. Constraints marked (∗) are lazy constraints.



Constraints (29) and (30) are uniqueness and capacity constraints: batches
have to remain within capacity b, and every job can only occupy one batch.
Constraints (31) and (32) define the value of P ′k for every batch k as the longest
p of all jobs in k, but at least pk. This is required in (34), which follows the
explanation above. Constraints (33) ensure that no job is moved into a hostless
batch, i.e. in order to move job j into batch k (xjk = 1), job k must still be
in batch k (xkk = 1). Constraints (35) implement the requirement that jobs
are only moved into earlier batches. Constraints (36) and (37) implement the
additional lazy constraints described above.

5 Empirical comparison

We empirically compared the performance of the CP model by Malapert et
al. and Model 4.1. Both models were run on 120 benchmark instances as in
Malapert et al. (i.e. 40 instances of each nj = {20, 50, 75}). The benchmarks
are generated as specified by Daste [11], with a capacity of b = 10 and values
for pj , sj and dj distributed as follows: pj = U [1, 99], sj = U [1, 10], and dj =

U [0, 0.1] · C̃max + U [1, 3] · pj . U [a, b] is a uniform distribution between a and b,

and C̃max = 1
bn ·

(∑nj

j=1 sj ·
∑nj

j=1 pj
)

is an approximation of the time required
to process all jobs.

The MIP benchmarks were run using cplex 12.5 [23] on an Intel i7 Q740
CPU (1.73 GHz) and 8 GB RAM in single-thread mode, with cplex parameters
Probe = Aggressive and MIPEmphasis = Optimality (the latter for n = 20
only). The CP was implemented using the Choco solver library [24] and run on
the same machine using the same problem instances.2 Solving was aborted after
a time of 3600 seconds (1 hour).

The reference MIP model solves fewer than a third of the instances within the
time limit. The branch-and-price model [11] is reported to perform considerably
worse than CP [4]. Therefore, neither of the two is included here.

5.1 Results

The overview in Table 1 shows aggregated results that demonstrate the perfor-
mance and robustness of our new model. As shown in Figure 3, our MIP model
performs better overall on instances with nj = 20 and nj = 75, while MIP and
CP perform similarly well on intermediate problems (nj = 50).

Wherever an optimal solution was not found, the improved MIP model
achieved a significantly better solution quality: out of the 40 instances with
nj = 75, 22 were solved to optimality by both CP and MIP, 13 were solved
to optimality by the MIP only, and 5 were solved by neither model within an
hour. A comparison of solution quality where no optimal schedule was found
confirms the robustness of the improved MIP model: as Figure 4 illustrates, the

2 The authors would like to extend a warm thank-you to Arnaud Malapert for both
providing his code and helping us run it.



nj optimal soln. found by instances
solving time [s] absolute gap
CP MIP CP MIP

20 both models 40/40 0.42 0.04 0 0

50 both models 40/40 5.67 4.16 0 0

75

both models 22/40 49.30 52.88 0 0
CP model only 0/40 — — — —
MIP model only 13/40 > 3600 139.86 323.46 0
neither model 5/40 > 3600 > 3600 310.40 25.00

Table 1. Summary of empirical results. Values are geometric means for solving time
and arithmetic means for absolute gaps. No relative gaps are given due to negative
lower bounds.

Mean (120 instances)
Reference MIP Improved MIP Reduction

Rows Cols Rows Cols Rows Cols

Before presolve 7415.14 3033.81 4291.48 2882.76 −42.1% −5.0%
After presolve 2209.34 1513.06 754.57 687.13 −65.8% −54.6%

Reduction −70.2% −50.1% −82.4% −76.1% — —

Table 2. Average numbers of variables and constraints in reference and improved MIP
models before and after processing by cplex’s presolve routines.

gap (UB(Lmax)−LB(Lmax)) is consistently larger in the CP model. This means
that even with very difficult problems, our model will often give near-optimal
solutions more quickly than Malapert et al.’s CP model.

We further found that the lazy constraints introduced in Section 3.3 did not
yield consistent benefits across problems; in fact, they doubled and tripled solv-
ing times for some instances. On average, however, adding the lazy constraints
resulted in a speed gain on the order of about 10%, especially for larger problems
(n ≥ 50).

6 Discussion

One likely contribution to the new model’s performance is its reduced size com-
pared to the reference MIP model: while the reference model required 3n2 + 8n
constraints over n2 + 3n variables, our model uses fewer than 2.5n2 + 2.5n con-
straints over n2 + n variables.3 In addition, cplex’s presolve methods are more
effective on our model (see Table 2), reducing its size further.

Figure 5 shows the evolution of bounds (i.e. best feasible solutions and tight-
est LP solutions at the nodes) for the three models over the first few seconds.
It is based on the logs for the 40 instances with n = 75, which contain only

3 The word “fewer” here arises from the problem-specific cardinality of B?.



Fig. 3. Performance comparison over
120 instances, each represented by one
data point. Horizontal/vertical coordi-
nates correspond to solving time by CP
model and improved MIP model, respec-
tively. Note that 18 instances were not
solved to optimality within an hour by
either the CP model or both models.

Fig. 4. Comparison of solution quality
for the 18 instances that were not solved
to optimality within an hour by either
the CP model or both models. White
bars represent the LB-UB gap achieved
by the CP model, black bars the LB-UB
gap achieved by the improved MIP model
(straight line where solved to optimality).

irregular timestamps. While the new MIP model is better than the reference
model on both the lower and upper bounds, the largest gain appears to derive
from the latter, indicating that unlike what is commonly observed, the improved
MIP model benefits not from a tighter relaxation but from being more amenable
to the solver’s primal heuristics.

The upper bound for the improved MIP model matches that of the CP model.
CP is often able to find high quality solutions faster than MIP. However, the
improved model removes that advantage on our test problems.
Making moves in MIP modeling One of the novelties of the new MIP
model, as well as much of its inspiration, is the consideration of moves from the
canonical single-EDD solution. The effects of the assignment variables on the
objective function can be considered discretely, allowing us to reason about them
algorithmically even though they constitute a declarative model. The concept
of moves is common in local search techniques including Large Neighbourhood
Search (LNS) [25] where moves correspond to the removal and re-insertion of
jobs from and into the schedule, similar to our reasoning in Section 3.2.

This line of reasoning presents several interesting directions for future work
including (i) using the idea of moves from a canonical solution to develop MIP
and CP models for other optimization problems and (ii) the derivation of dom-
inance rules to restrict LNS moves on large problems and thereby expand the
size of the neighbourhoods that can be explored.

Models vs. global constraints Our results show that the novel MIP model
is an improvement over previous approaches, demonstrating that at least in



Fig. 5. Evolution of upper and lower bounds. Left cutoffs indicate the approximate
mean time at which the respective bound was first found.

this case, the performance of a specialized global constraint implementation can
indeed be matched and exceeded by a comparatively simple mathematical for-
mulation. Mathematical models have the general benefit of being more readily
understandable, straightforward to implement and reasonably easy to adapt to
new, similar problems.

A global constraint is most valuable when it is the encapsulation of a problem
structure that occurs across a number of interesting problem types. It can then
be used far beyond its original context. However, with the flexibility to define
arbitrary inference operations comes the temptation to develop problem-specific
global constraints and to trade the ideal of re-usability for problem solving power.
We believe that the collection of global constraints in CP is mature enough that
most problem-specific efforts are now best placed on exploring novel ways to
exploit problem structure using existing global constraints. To this end, one of
our current research efforts is the development of a CP model exploiting the
propositions proved in this paper without needing novel global constraints.

7 Conclusion

In this paper, we addressed an existing parallel-batch scheduling problem for
which CP is the current state-of-the-art approach. Inspired by the idea of moves
from a canonical solution, we proved a number of propositions allowing us to
create a novel MIP model that, after presolving, is less than half the size of the
previous MIP model. Empirical results demonstrated that, primarily due to the
ability to find good feasible solutions quickly, the new MIP model was able to
out-perform the existing CP approach over a broad range of problem instances
both in terms of finding and proving optimality and in terms of finding high
quality solutions when the optimal solution could not be proved.
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[4] Malapert, A., Guéret, C., Rousseau, L.M.: A constraint programming approach
for a batch processing problem with non-identical job sizes. European Journal of
Operational Research 221 (2012) 533–545

[5] Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.: Solving RCPSP/max by lazy
clause generation. Journal of Scheduling 16(3) (2013) 273–289

[6] Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Con-
straints 5(1-2) (2000) 119–139

[7] Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling. Kluwer
Academic Publishers (2001)
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