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Translating SCT into RT

Given a SCT Πnum = 〈Fp,N ,A, sI , G〉, we define a trans-
formed task ΠRT = 〈Fp,N RT,ART, sRT

I , G
RT〉 built as fol-

lows. For every numeric expression mentioned in every nu-
meric condition ψ ∈ F̄n, we add an additional numeric
variable vψ ∈ N RT, with sI [vψ] =

∑
v∈N w

ψ
v sI [v]. Each

numeric condition is replaced by vψ ≥ wψ0 and, for ev-
ery action a, a numeric effect on every variable vψ must
be added, with the form vψ ← vψ +

∑
v∈N w

ψ
v k

a
v , where

v += kav ∈ Q are the original numeric effects of the ac-
tion. This translation is polynomial in the number of active
numeric conditions of the planning task.

Proofs
Proposition 1. Given a planning task Π, cost partitioning
{Πi}ni=1, and an admissible heuristic function hi for each
Πi, the heuristic function h(s) =

∑n
i=1 hi(s) is admissible.

Proof. Consider the case n = 2. For any state s, Let π
be an optimal s-plan with the cost h∗(s) for Π. Since Π1

and Π2 are the same as Π except for the cost functions, π
is also a valid s-plan for both Π1 and Π2. Let the cost of
π in Π1 and Π2 be h′1(s) and h′2(s), respectively. Since
∀a ∈ A : cost1(a) + cost2(a) = cost(a), it holds that
h′1(s) + h′2(s) = h∗(s). Let h∗1(s) and h∗2(s) be the optimal
solution costs for Π1 and Π2. As h1 and h2 are admissible in
Π1 and Π2, h1(s) ≤ h∗1(s) ≤ h′1(s) and h2(s) ≤ h∗2(s) ≤
h′2(s). Thus, h1(s) + h2(s) ≤ h′1(s) + h′2(s) = h∗(s), so
h1(s) + h2(s) is admissible in Π.

The n > 2 case follows by induction.

The above proof does not use any property which is only
included in classical planning but not in numeric planning.
Therefore, the proposition of the cost-partitioning also holds
for numeric planning.

Proposition 2. Given an RT and a state s, the problem of
computing hmax is NP-hard.

Proof. We show this result by reduction from the minimiza-
tion version of the unbounded knapsack problem (mUKP),
which is proved to be NP-hard (Zukerman et al. 2001). Let
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J be a set of elements, each element i ∈ J has a value wi
and cost ci. The mUKP problem consists in finding how
many times xi ∈ N0 to select each element i to minimize∑
i∈J cixi such that

∑
i∈J wixi ≥ W , where wi, ci, W

are positive rational numbers. Let V (X) be the optimal cost
for an mUKP with the constraint

∑
i∈J wixi ≥ X . Since

V (0) = 0, we assume that V (X) = 0 if X ≤ 0. Then,
V (X) satisfies the following recursion formula:

V (X) = min
i∈J

V (X − wi) + ci.

Since ∀i ∈ J,wi > 0, X − wi < X . Applying the formula
recursively, we reaches X ≤ 0 in a finite number of steps,
and the recursion terminates. V (W ), the optimal cost for the
mUKP, is uniquely determined by the recursion.

Given an instance of the mUKP, we build an RT with no
propositional variables and with one numeric variable v. For
every element i we have an action ai such that pre(ai) = ∅,
and num(ai) = {v += wi}, cost(ai) = ci. We set sI [v] =
0 and G contains one condition v ≥ W . This RT instance
is obtained in O(|J |) time. We show that the solution of the
mUKP is equivalent to the solution of hmax. By definition,

hmax(sI) = ĥ(sI , G) = ĥ(sI , {v ≥W}) = ĥ(sI , v ≥W ).

For a rational number X , ĥ(sI , v ≥ X) = 0 if X ≤ 0
otherwise

ĥ(sI , v ≥ X) = min
ai∈supp(v≥X)

ĥ(s, v ≥ X − wi) + cost(ai)

because all actions have no precondition. Since num(ai) =
{v += wi} for each action ai and supp(v ≥ X) = {ai |
i ∈ J},

ĥ(sI , v ≥ X) = min
i∈J

ĥ(s, v ≥ X − wi) + ci.

This is equivalent to V (W ), so hmax(sI) = ĥ(sI , v ≥ W )
is the optimal cost for mUKP.

Here, we show an RT where hLM-cut
hbd returns an inadmissi-

ble heuristic value.
Example 3. Let ΠRT = 〈Fp,N ,A, sI , G〉 be an RT
with Fp = {p1, p2, p3, p4, p5, g1, g2} and N = {v}.
Let sI = {v = 0}, G = {g1, g2}, and A =
{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}, where



action pre eff cost
a1 ∅ p1 3
a2 ∅ p2 1
a3 ∅ p3 5
a4 p1 p4 1
a5 p2 p5 1
a6 p3 v += 1 0
a7 p4, p5 v += 1 1
a8 p4 g1 0
a9 p5 g2 0
a10 v ≥ 1 g1, g2 0

We show a hypergraph representation of the task in Figure 3.
The optimal plan is 〈a3, a6, a10〉 with the cost of 5.
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Figure 3: A hypergraph representation of Ex. 3. The action
costs are shown in parentheses.

Consider hLM-cut
hbd for this task using the justification

graphs for hmax
hbd . Let ΠRT

i be the planning task with reduced
action costs costi after extracting the i th cut Li in the com-
putation of hLM-cut

hbd . For each ψ ∈ Fp ∪ F̄n, hmax
hbd (sI , ψ) in

each task is as follows:

hmax
hbd (sI , ψ) ΠRT ΠRT

1 ΠRT
2 ΠRT

3 ΠRT
4

∅ 0 0 0 0 0
p1 3 3 0 0 0
p2 1 1 1 1 0
p3 5 5 5 5 5
p4 4 3 0 0 0
p5 2 2 2 1 0

v ≥ 1 4 3 2 1 0
g1 4 3 0 0 0
g2 2 2 2 1 0

In ΠRT and ΠRT
1 ,

pcfhbd(sI , a6, v ≥ 1) = pcfhbd(sI , a7, v ≥ 1) = p4

and p4 ∈ Ng since

argmin
a∈supp(v≥1)

hmax
hbd (s, pre(a)) = argmin

a∈{a6,a7}
hmax

hbd (s, pre(a))

= {a7},

argmax
ψ∈supp(a7)

hmax
hbd (s, ψ) = argmax

ψ∈{p4,p5}
hmax

hbd (s, ψ) = {p4},

and cost(a7) = 0. Likewise,

pcfhbd(sI , a6, v ≥ 1) = pcfhbd(sI , a7, v ≥ 1) = p5

and p5 ∈ Ng in ΠRT
2 and ΠRT

3 . The justification graphs are
shown in Figure 3. Note that p3 never appears in the jus-
tification graphs because pcfhbd(sI , a6, v ≥ 1) 6= p3. We
have

hmax
hbd (sI) = 4 < h∗(sI) = 5 < hLM-cut

c (sI) = 6.
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Figure 4: JGs for the RT in Ex. 3. The functions W, W1, W2,
and W3 denote the cut weights of the LM-cut procedures,
where action costs are reduced in each iteration.

The inadmissibility of hLM-cut
hbd follows directly from Ex. 3.

Proposition 3. The LM-cut heuristic based on the pcfhbd
JG, hLM-cut

hbd , is inadmissible
Lemma 1. Assume an RT of a non-zero cost. Let G be the
JG corresponding to ΠRT, and let L be a directed cut in G
that separates n∅ from ng , such that W(L) > 0. Then,

1. ∂ in(L) is a disjunctive fact landmark.
2. label(L) is a disjunctive action landmark.

Proof. Let π be a plan for ΠRT. Let us construct the sub-
sequence π′ of the plan π. Let ag be the first action in π
that achieves the atom g. Note that by construction s 6|= g,
thus such action should exist. For the action ag we chose
the first action in π that achieves pcf(ag), and repeat the
process until we reach a fact ψ such that s |= ψ. Note that
by construction π′ induces a path from n∅ to ng in the JG.
Thus, for every cut L that separates n∅ from ng we have
that at least one fact in ∂ in(L) is achieved by π′, and π′ ∩
label(L) 6= ∅. Thus, ∂ in(L) is a disjunctive fact landmark.
Note that a0, an artificial action label, is never included in
L. If a0 ∈ label(L), ∃(n∅, nψ; a0) ∈ L, nψ ∈ Ng . Since
the cost of a0 is zero, n∅ ∈ Ng , and this contradicts that



L = (N0, Ng ∪ N b). Therefore, label(L) is a disjunctive
action landmark.

We show that the justification graphs based on pcfcri and
pcfhbd justify hmax

cri and hmax
hbd , respectively.

Proposition 4. Given an RT a state s, and the justification
graph based on pcfcri, the weight of the shortest path from
n∅ to nψ ∈ N is equal to hmax

cri (sI , ψ).

Proof. The shortest paths to other nodes can be incremen-
tally computed in the topological order, and the first node
is n∅. Therefore, we assume that the weight w(nψ′) of
the shortest path from n∅ to nψ′ is already known for all
(nψ′ , nψ; a) ∈ E. Assume that w(nψ′) = hmax

cri (s, ψ′) for
all (nψ′ , nψ; a) ∈ E. This is correct for ψ′ = ∅ because
w(n∅) = hmax

cri (s, ∅) = 0. Then,

w(nψ) = min
(nψ′ ,nψ;a)∈E

ma(s, ψ)cost(a) + w(nψ′)

= min
(nψ′ ,nψ;a)∈E

ma(s, ψ)cost(a) + hmax
cri (s, ψ′).

Since ψ′ = pcfcri(s, a) ∈ argmaxψ̂∈pre(a) h
max
cri (s, ψ̂),

hmax
cri (s, ψ′) = max

ψ̂∈pre(a)
hmax

cri (s, ψ̂) = hmax
cri (s, pre(a)).

Because supp(ψ) = {a | (nψ′ , nψ; a) ∈ E},

w(nψ) = min
a∈supp(ψ)

ma(s, ψ)cost(a) + hmax
cri (s, pre(a))

= hmax
cri (s, ψ).

By mathematical induction, the shortest path from n∅ to any
node nψ is equal to hmax

cri (s, ψ).

Proposition 5. Given an RT a state s, and the justification
graph based on pcfhbd, the weight of the shortest path from
n∅ to nψ ∈ N is equal to hmax

hbd (sI , ψ).

Proof. The shortest paths to other nodes can be incremen-
tally computed in the topological order, and the first node
is n∅. Therefore, we assume that the weight w(nψ′) of
the shortest path from n∅ to nψ′ is already known for all
(nψ′ , nψ; a) ∈ E. Assume that w(nψ′) = hmax

hbd (s, ψ′) for
all (nψ′ , nψ; a) ∈ E. This is correct for ψ′ = ∅ because
w(n∅) = hmax

hbd (s, ∅) = 0. Then,

w(nψ) = min
(nψ′ ,nψ;a)∈E

ma(s, ψ)cost(a) + w(nψ′)

= min
(nψ′ ,nψ;a)∈E

ma(s, ψ)cost(a) + hmax
hbd (s, ψ′).

If ψ ∈ Fp, since

ψ′ = pcfhbd(s, a, ψ) ∈ argmax
ψ̂∈pre(a)

hmax
hbd (s, ψ̂)

and
supp(ψ) = {a | (nψ′ , nψ; a) ∈ E},

hmax
hbd (s, ψ′) = max

ψ̂∈pre(a)
hmax

hbd (s, ψ̂) = hmax
hbd (s, pre(a)).

Thus,

w(nψ) = min
a∈supp(ψ)

ma(s, ψ)cost(a) + hmax
hbd (s, pre(a))

= hmax
hbd (s, ψ).

Now, assume that ψ ∈ F̄n.

hmax
hbd (s, ψ′) = max

ψ̂∈pre(â)
hmax

hbd (s, ψ̂)

where
â = argmin

a′∈supp(ψ)
hmax

hbd (s, pre(a′)).

Since this is independent of ψ′ and a,

w(nψ) = mina∈supp(ψ) ma(s, ψ)cost(a)

+ maxψ̂∈pre(â) h
max
hbd (s, ψ̂).

As

hmax
hbd (s, ψ̂)

= mina′∈supp(ψ) maxψ̂∈pre(a′) h
max
hbd (s, ψ̂)

= mina′∈supp(ψ) h
max
hbd (s, pre(a′)),

w(nψ) = mina∈supp(ψ) ma(s, ψ)cost(a)
+ mina′∈supp(ψ) h

max
hbd (s, pre(a′))

= hmax
hbd (s, ψ)

By mathematical induction, the shortest path from n∅ to any
node nψ is equal to hmax

hbd (s, ψ).
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