
DSHARP: Fast d-DNNF Compilation with sharpSAT
(Amended Version)∗

Christian Muise1 and Sheila A. McIlraith1 and J. Christopher Beck2 and Eric Hsu1

1Department of Computer Science, University of Toronto, Toronto, Canada.
2Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada.

1{cjmuise, sheila, eihsu}@cs.toronto.edu
2jcb@mie.utoronto.ca

Abstract

Knowledge compilation is a compelling technique for dealing
with the intractability of propositional reasoning. One partic-
ularly effective target language is Deterministic Decompos-
able Negation Normal Form (d-DNNF). We exploit recent
advances in #SAT solving in order to produce a new state-of-
the-art CNF → d-DNNF compiler: DSHARP. The core tech-
nique we leverage for DSHARP is to extract the search trace
from the complete #SAT solver. Empirical results demon-
strate that DSHARP is generally an order of magnitude faster
than C2D, the de facto standard for compiling to d-DNNF,
while yielding a representation of comparable size.

1. Introduction
To deal with the intractability of propositional reasoning
tasks, one can sometimes compile a propositional theory
from a source language into a target language that guar-
antees tractability. This compilation process, popularly re-
ferred to as knowledge compilation, has proved to be an ef-
fective technique for dealing with many practical reasoning
problems (Darwiche and Marquis 2002). Here we are
interested in Deterministic Decomposable Negation Normal
Form (d-DNNF), a language that supports efficient reason-
ing for tasks such as consistency checking and model count-
ing. d-DNNF has also been exploited more recently for a
diversity of AI applications including Bayesian reasoning
(Chavira, Darwiche, and Jaeger 2006), conformant planning
(Palacios et al. 2005), diagnosis (Siddiqi and Huang 2008),
and database queries (Jha and Suciu 2011).

The de facto standard for CNF → d-DNNF compilation
is C2D, a tool developed and refined by Darwiche and col-
leagues over a number of years.1 Although C2D is well
designed and optimized, CNF→ d-DNNF compilation can
still be slow. Knowledge compilation has traditionally been
characterized as an off-line process and its processing time is
rationalized by amortizing it over numerous queries. How-
ever, recent problem specific use of d-DNNF in tasks such as
planning and diagnosis challenges this characterization and
emphasizes the need for fast compilation.

∗A version of this paper also appears in the Proceedings of the
25th Canadian Conference on Artificial Intelligence (CAI-12). The
only notable difference is the addition of Section 5..

1http://reasoning.cs.ucla.edu/c2d/

We propose a new CNF→ d-DNNF compiler, DSHARP.2
Our compiler builds on the research by Huang and Darwiche
showing that d-DNNF can be extracted from the trace of
an exhaustive search of a propositional theory (Darwiche
2004). To this end, we construct our compiler by appealing
to a state-of-the-art #SAT solver, sharpSAT (Thurley 2006).
Our compiler exploits two significant features of sharpSAT
that distinguish it from previous CNF → d-DNNF compil-
ers: dynamic decomposition and implicit binary constraint
propagation.

We evaluated the performance of DSHARP on 300 prob-
lem instances over eight domains taken from SatLib3 and the
Fifth International Planning Competition.4 DSHARP solved
more problem instances than C2D in the time allowed, and
showed a significant improvement in run time. The size of
the resulting d-DNNF representation was maintained, and
was on average five times smaller. We additionally per-
formed an analysis of the DSHARP components that impact
the compiler’s efficiency. Further details on this experiment
and a more in depth analysis of the results can be found in
(Muise et al. 2010).

2. Preliminaries
Darwiche and Marquis proposed the knowledge compilation
map, an analysis of a number of target compilation lan-
guages with respect to two key features: succinctness and
the class of queries and transformations that the language
supports in polytime (Darwiche and Marquis 2002). The
set of tasks considered includes consistency, validity, clausal
entailment, implicant checking, equivalence, sentential en-
tailment, model counting, and model enumeration. The
most general target language of the map is Negation Normal
Form (NNF), a directed acyclic graph in which the label of
each leaf node is a literal, TRUE, or FALSE, and the label
of each internal node is a conjunction (∧) or a disjunction
(∨). Here we study compilation to d-DNNF, the subset
of NNF satisfying decomposability and determinism. We
define NNF to be the family of boolean formulae that are
built from the operators ∨, ∧, and ¬, with the added restric-
tion that all ¬ operators exist only at the literal level. De-

2http://www.haz.ca/research/dsharp/
3http://www.satlib.org/
4http://www.ldc.usb.ve/˜bonet/ipc5/



:xx y

V

§^:x^ y§^ x

V

W
x= ?

§

Figure 1: Partial d-DNNF from an exhaustive DPLL trace.

composable Negation Normal Form (DNNF) is the subset of
NNF formulae whose members additionally have the prop-
erty that the formula operands of ∧ do not share variables.
Finally, d-DNNF is the subset of DNNF whose members
have the additional property that the formula operands of ∨
are logically inconsistent. d-DNNF permits polytime (in the
size of the representation) processing of clausal entailment,
model counting, model minimization, model enumeration,
and probabilistic equivalence testing (Darwiche 2004). The
conceptualization of d-DNNF as a directed acyclic and-or
graph helps us understand its relation to the DPLL trace.
Exhaustive DPLL Trace To develop a state-of-the-art
CNF → d-DNNF compiler, we use a result of Huang and
Darwiche that shows we can extract d-DNNF from the trace
of an exhaustive search of a propositional theory (Huang
and Darwiche 2005). More specifically, we exploit the ex-
haustive search performed by the #SAT solver, sharpSAT
(Thurley 2006). The exhaustive DPLL algorithm is a mod-
ification of DPLL used to find all solutions and, therefore,
to implicitly explore the entire search space. Each node in
the search tree corresponds to a decision in the exhaustive
DPLL search (i.e., assigning a variable to either TRUE or
FALSE). Decision nodes correspond to or nodes in the d-
DNNF representation. For each or node, we add and nodes
as children, corresponding to the subtrees for the decision
variable’s setting and any variable assignments inferred by
unit propagation.

Fig. 1 shows an example of part of the d-DNNF at a deci-
sion node where variable x has been chosen. The theory as
it exists before setting x is Σ, and the theory solved for each
subproblem is Σ∧ x and Σ∧¬x∧ y (after unit propagation
is run). If any unit propagation occurs due to the variable
being set, we record the implied literals under the appropri-
ate and node. For example, Fig. 1 shows the literal y as an
implication of setting x = FALSE.

Following this approach, we are left with an and-or tree
with the leaf nodes corresponding to literals of the theory.
The tree has all of the required properties to qualify as a

representation for the d-DNNF language: it is in negation
normal form since the negations are at the literal level, it is
decomposable because the children of and nodes are disjoint
theories, and it is deterministic since the immediate children
of every or node has both a literal and its negation making
the conjunction inconsistent.

3. DSHARP
sharpSAT is a state-of-the-art solver for the problem of
#SAT. DSHARP uses the algorithmic components of sharp-
SAT responsible for its strong performance. Specifically, we
have adapted the following to compute a d-DNNF represen-
tation: dynamic decomposition, implicit binary constraint
propagation, conflict analysis, non-chronological backtrack-
ing, pre-processing, and component caching. Here, we de-
scribe each component and the modifications we made to
produce an efficient CNF→ d-DNNF compiler.

Dynamic Decomposition A theory in CNF is disjoint if it
can be partitioned into sets of clauses (called components)
such that no two sets share variables. We can compile each
component individually and combine the results, a technique
called disjoint component analysis. This technique changes
the structure of the d-DNNF representation; we treat each
component as an individual theory and add the d-DNNF for
each component as a child to the and node where the the-
ory was found to be disjoint. Consider Fig. 2. After the
solver decides that x1 = TRUE, the theory decomposes into
two components (corresponding to the parts of the d-DNNF
rooted at each or node marked I).

There are two prevailing methods for disjoint component
analysis. In static decomposition, the solver computes the
components prior to search while in dynamic decomposition,
the solver computes the components during search. There is
a trade-off between the two methods in terms of simplic-
ity, computational difficulty, and effectiveness. C2D uses a
static decomposition while DSHARP uses dynamic decom-
position.

Implicit Binary Constraint Propagation DSHARP em-
ploys a simple form of lookahead during search called im-
plicit binary constraint propagation (IBCP) (Thurley 2006).
In IBCP, a subset of the unassigned variables are heuristi-
cally chosen at a decision node and the impact of assigning
any one of them is evaluated. We test each variable in the
chosen set for both TRUE and FALSE. If either assignment
causes unit propagation to derive an inconsistency, the solver
soundly infers the opposite assignment.

IBCP, via unit propagation, may infer the assignment of a
number of literals during the lookahead. Unless the theory
becomes inconsistent, these implications should be ignored
since the variable setting will be undone. DSHARP main-
tains the temporary implications and includes them perma-
nently only when a variable setting is kept.

Conflict Analysis / Non-Chronological Backtracking
Conflict analysis refers to the use of conflict clauses to re-
duce search effort. When the solver reaches a dead end in
the search space it records a reason for this conflict in the
form of a new clause. We add the clause to the theory, and



I

II

III

:x3

x1 l3
W

:x1

V

W

W

VV

VV

V

V

x2

:l0 l2l1

:l4 :x2l5l4x3 l5

Figure 2: Example d-DNNF representation as DSHARP may
generate during search.

subsequently include it in unit propagation and the compu-
tation of heuristics. Non-chronological backtracking (NCB)
uses learned conflict clauses to backtrack past the most re-
cent assignment to the highest decision node possible while
remaining sound. Both conflict analysis and NCB are widely
used in a variety of SAT-solving applications and solvers
(Beame, Kautz, and Sabharwal 2003). The addition of con-
flict clauses during the solving procedure does not change
the structure of the d-DNNF. When DSHARP uses NCB it
must step back in the partial d-DNNF to the correct spot be-
fore continuing to record, but this does not affect the struc-
ture of the d-DNNF representation either.

Component Caching Component caching is an extension
of disjoint component analysis where the solver stores the d-
DNNF result for each component and retrieves it if DSHARP
encounters that component again during search. Caching
can have substantial savings when the theory naturally de-
composes during search. One way of handling component
caching in the trace would be to duplicate the repeated d-
DNNF subtree when DSHARP re-encounters a component.
However, if we relax the assumption that the d-DNNF rep-
resentation is an and-or tree, we can simply link to the part
of the d-DNNF corresponding to the repeated component.
The d-DNNF representation then becomes a DAG: a more
concise form of representing the d-DNNF. Fig. 2 (II) shows
an example of a d-DNNF when DSHARP reuses a compo-
nent through component caching.

Pre-processing Finally, pre-processing is a version of
IBCP used at the root node to simplify the starting theory.
Pre-processing performs the same lookahead as IBCP, but
on all variables rather than on a heuristically chosen subset.
If a setting to a variable exists such that unit propagation

causes the theory to become inconsistent, the solver soundly
infers the opposite setting. If pre-processing finds any vari-
ables to set, DSHARP records these as leaf nodes under a
root and node. The search proceeds as usual with the com-
piled d-DNNF attached as a child to the root node. Fig. 2
(III) shows an example of the result of pre-processing with
literals ¬l0, l1, and l2 inferred during pre-processing.

4. Experimental Analysis
To evaluate the DSHARP system, we compared both com-
pilation speed and the size of the output representation to
that of C2D. Experiments were conducted on a Linux desk-
top with a two-core 3.0GHz processor. Individual runs were
limited to a 30-minute time-out and a 1.5GB memory limit.
DSHARP was run with its default settings, and C2D was run
with dt method 4. While there is an extensive range of set-
tings for C2D, we found that this setting performed consis-
tently well. Similar to (Huang and Darwiche 2005), we used
the number of edges in the d-DNNF as an indication of the
size of the generated result.

We selected the benchmarks to cover a range of problem
types: uniform random 3SAT, structured problems encoded
as CNF (blocksworld; bounded model checking; flat graph
colouring; and logistics), and conformant planning problems
converted to CNF as described in (Palacios et al. 2005)
(emptyroom; grid; and sortnet).

Fig. 3 shows a broad picture of the results for compiler
run time and resulting size. All problems solved by at least
one solver are present in Fig. 3a and all problems that both
solved are in Fig. 3b. Points above the y = x line indi-
cate better performance of DSHARP (i.e., smaller run time
and smaller size, respectively). Fig. 3a shows that DSHARP
achieved a lower run time on almost all of the problem in-
stances (274 of the 286 solved by at least one solver) while
Fig. 3b demonstrates that the sizes of the output are compa-
rable, with a few outliers in favour of each solver.

DSHARP solved more instances than C2D in five of the
eight domains and an equal number in the remaining three.
Overall, DSHARP solved 286 of the 300 instances while
C2D only solved 275. DSHARP was significantly faster in
all but one domain (blocksworld) and it was 27 times faster
on average. When DSHARP was faster, it was by at least
one order of magnitude in all but one domain (empty room).
The results for d-DNNF size are more even: in three do-
mains DSHARP was significantly smaller and in one domain
it was significantly larger. In the remaining domains, the dif-
ference in output size was not statistically significant. When
considering problems from all domains, we found that C2D
produced d-DNNF representations about 5 times larger than
DSHARP, though this difference was not statistically signif-
icant. Further details on the results and an analysis of the
impact of the DSHARP components can be found in (Muise
et al. 2010).

5. Related Work and Extensions
Relying on the trace of a complete DPLL based solver is the
prevailing technique for CNF → d-DNNF compilers; used
by both DSHARP and C2D (Darwiche 2004). The DPLL



(a) Run time comparison (b) Size comparison

Figure 3: Scatter plot of the run time (in seconds) and the number of edges in the generated d-DNNF for each problem instance
using C2D (y-axis) or DSHARP (x-axis). Points above the line represent problems where DSHARP was better. All axes are
log-scale.

trace has been leveraged for proving bounds on model count-
ing, such as the work of Beame et al. (2013). It has also been
used to good effect for proving theoretical results about the
worst-case size complexity of the d-DNNF representation
(Oztok and Darwiche 2014).

Knowledge compilers (including the DSHARP software
presented in this paper) have played a role as sub-
components in larger systems. One example is in the SAT-
based analysis of quantification information flow programs,
where efficient methods for conditioned model counting us-
ing d-DNNF were exploited (Klebanov, Manthey, and Muise
2013). Another example is the Probabilistic Logic Program-
ming framework, ProbLog (Fierens et al. 2015). Here, the
model counters were used to provide probabilistic inference
for targeted queries compiled from a given logic program.

Finally, since the original publication of this work in 2012
by Muise et al., the DSHARP software has been extended
in a variety of ways. Most notably, the software has been
extended to do model counting with the assumption of stable
model semantics (Aziz et al. 2015b), as well as extended
to do projected model counting and knowledge compilation
(Aziz et al. 2015a).

6. Concluding Remarks
d-DNNF is proving to be an effective language for a diver-
sity of practical AI reasoning tasks including Bayesian in-
ference, conformant planning, and diagnosis. Many of these
applications require the CNF→ d-DNNF compilation to be
performed on a problem-specific basis, and as such compi-
lation time is included in the measure of performance of the
overall system. CNF→ d-DNNF compilers, therefore, need
to be fast while continuing to produce high quality repre-
sentations. We address this need through the development
of a new state-of-the-art CNF → d-DNNF compiler that
builds on #SAT technology, and in particular on advances

found in the solver, sharpSAT. Our system, DSHARP, ex-
ploits the DPLL trace constructed for model counting to con-
struct a d-DNNF representation of the propositional theory.
DSHARP leverages the latest advances in #SAT technology,
including dynamic decomposition, IBCP, conflict analysis,
NCB, component caching, and pre-processing. We tested
DSHARP on a variety of problem sets in SAT solving and
planning. DSHARP solved more instances than C2D in the
time allowed, averaging an improvement of 27 times in run
time while maintaining the size of the d-DNNF generated by
C2D. In future work, we plan to experiment with further
optimizations of DSHARP and applications to more diverse
AI domains.

Acknowledgements
The authors gratefully acknowledge funding from the On-
tario Ministry of Innovation and the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References
Aziz, R. A.; Chu, G.; Muise, C.; and Stuckey, P. 2015a.
Projected model counting. In International Conference on
Theory and Applications of Satisfiability Testing.
Aziz, R. A.; Chu, G.; Muise, C.; and Stuckey, P. 2015b.
Stable model counting and its application in probabilistic
logic programming. In The 29th AAAI Conference on Arti-
ficial Intelligence.
Beame, P.; Li, J.; Roy, S.; and Suciu, D. 2013. Lower
bounds for exact model counting and applications in proba-
bilistic databases. In Proceedings of the Twenty-Ninth Con-
ference on Uncertainty in Artificial Intelligence, UAI 2013,
Bellevue, WA, USA, August 11-15, 2013.
Beame, P.; Kautz, H.; and Sabharwal, A. 2003. Under-
standing the power of clause learning. In International



Joint Conference on Artificial Intelligence, volume 18,
1194–1201.
Chavira, M.; Darwiche, A.; and Jaeger, M. 2006. Compil-
ing relational bayesian networks for exact inference. Inter-
national Journal of Approximate Reasoning 42:4–20.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Darwiche, A. 2004. New advances in compiling CNF to
decomposable negational normal form. In Proceedings of
European Conference on Artificial Intelligence.
Fierens, D.; den Broeck, G. V.; Renkens, J.; Shterionov,
D. S.; Gutmann, B.; Thon, I.; Janssens, G.; and Raedt,
L. D. 2015. Inference and learning in probabilistic
logic programs using weighted boolean formulas. TPLP
15(3):358–401.
Huang, J., and Darwiche, A. 2005. DPLL with a trace:
from SAT to knowledge compilation. In International Joint
Conference On Artificial Intelligence, 156–162.
Jha, A., and Suciu, D. 2011. Knowledge compilation
meets database theory: compiling queries to decision di-
agrams. In Proceedings of the 14th International Confer-
ence on Database Theory, 162–173. ACM.
Klebanov, V.; Manthey, N.; and Muise, C. 2013. SAT-
based Analysis and Quantification of Information Flow in
Programs. In 10th International Conference on Quantita-
tive Evaluation of SysTems (QEST 2013), 177–192.
Muise, C.; McIlraith, S. A.; Beck, J. C.; and Hsu, E. 2010.
Fast d-DNNF compilation with sharpSAT. In Workshop
on Abstraction, Reformulation, and Approximation (AAAI-
10).
Muise, C.; Mcilraith, S. A.; Beck, J. C.; and Hsu, E. 2012.
DSHARP: Fast d-DNNF Compilation with sharpSAT. In
Canadian Conference on Artificial Intelligence.
Oztok, U., and Darwiche, A. 2014. On compiling CNF into
decision-dnnf. In Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014,
Lyon, France, September 8-12, 2014. Proceedings, 42–57.
Palacios, H.; Bonet, B.; Darwiche, A.; and Geffner, H.
2005. Pruning conformant plans by counting models on
compiled d-DNNF representations. In Proceedings of the
15th International Conference on Automated Planning and
Scheduling, 141–150.
Siddiqi, S., and Huang, J. 2008. Probabilistic sequential
diagnosis by compilation. Tenth International Symposium
on Artificial Intelligence and Mathematics.
Thurley, M. 2006. sharpSAT — counting models with ad-
vanced component caching and implicit BCP. In Ninth In-
ternational Conference on Theory and Applications of Sat-
isfiability.


