
Satisfaction Guaranteed∗

Eugene C. Freuder and Tom Carchrae and J. Christopher Beck
Cork Constraint Computation Centre

University College Cork, Ireland
{e.freuder, t.carchrae, c.beck}@4c.ucc.ie

Abstract

A constraint satisfaction problem (CSP) model can
be preprocessed to ensure that any choices made
will lead to solutions, without the need to back-
track. This can be especially useful in an inter-
active context in which different users access the
model to make choices on-line, e.g. in e-commerce
configuration. The conventional machinery for en-
suring backtrack-free search, however, adds addi-
tional constraints, which may require an impracti-
cal amount of space. A new approach is presented
here that achieves a backtrack-free representation
by removing values. This may limit the choice of
solutions, but we are guaranteed not to eliminate
them all. Experimental experience suggests that the
trade-off for users between processing effort and
solution loss may be worthwhile.

1 Introduction
A Constraint Satisfaction Problem (CSP) involves choosing
values for variables that satisfy restrictions (constraints) on
allowed value combinations. The basic method for solving
such problems is backtrack search, which involves choosing
values for variables in turn, backing up to make alternative
choices when there is no way to proceed without violating a
constraint.

Backing up is always costly, and in some situations may
be impractical or even impossible. A customer configuring
a purchase at an e-commerce website may abandon the pur-
chase when forced to reconsider his choices. An on-line pro-
duction process that chooses to mix in a chemical cannot “un-
mix” it. This paper is most directly motivated by work by
NASA scientists seeking assurances that autonomous space-
crafts can commit to scheduling decisions in real time[8].
We would like to preprocess problems to obtain a “backtrack-
free” representation that permits subsequent repeated use,
where users can make different choices at “execution time”,
secure in the knowledge that none can lead to failure.

Early work on CSPs guaranteed backtrack-free search for
tree-structured problems[4]. This was extended to general

∗This work has received support from Science Foundation Ire-
land under Grant 00/PI.1/C075.

CSPs through k-trees[5] and adaptive consistency[3]; but
these methods, of course, have exponential worst-case com-
plexity. We would argue that “offline” preprocessing time is
not a critical factor when we envision repeated “real time”
reuse of the backtrack-free representation, while users make
alternative choices (though these methods were not originally
proposed in this context). However, these methods also have
exponential worst-casespacecomplexity, which may indeed
make them impractical.

In this paper we propose preprocessing methods that can
achieve a backtrack-free problem representation (BFR) with-
out incurring any space penalty. For many problems the pre-
processing time seems acceptable; in any event it is no worse
than for conventional methods. Of course, there is a trade-off:
some, though not all, of the solutions may be lost. This re-
stricts the range of choice during subsequent use of the BFR,
but experimental evidence suggests that in many cases this
trade-off may lie within acceptable bounds.

Consider a simple example: a coloring problem on vari-
ables X, Y and Z. We wish to choose either red or blue as a
color for each variable. We are constrained in that Z must be
different in color from both X and Y. Suppose our user wants
to choose colors for X, Y and Z in that order. There is a dan-
ger that he may choose red for X, blue for Y, and then be left
with no choice for Z. The conventional way of “fixing” this
would be to add a new constraint between X and Y specifying
that the combination red for X and blue for Y is prohibited.
The new constraint would prevent the user from getting in
trouble in this way. However, the constraint requires addi-
tional space. This is a simple example of adaptive consis-
tency; in general we may have to add constraints involving as
many asn− 1 variables for ann-variable problem.

Our basic insight here is so simple that it may at first appear
simpleminded; but we are reassured by the observation that
this is often the case with perfectly good ideas. We will “fix”
the problem by removing the choice of red for X. The user
cannot get in trouble by choosing red for X because the choice
will not be there. Of course, this also removes a solution (red
X, red Y, blue Z), but another remains (blue X, blue Y, red
Z). If we also remove red as a value for Y we are left with a
backtrack-free representation. (Of course, this also leaves us
with no choices at all for this problem, just a single solution,
but in general we will only restrict, not eliminate, choice.)

In Section 2, we present a basic algorithm, BFRB, for pre-



Algorithm 1: BFRB - computes a BFR
BFRB(n):
Obtains a BFR forPn (maintained as a global variable)

1 if domain ofVn is emptythen
2 report Failure

3 if n = 1 then
4 report Success

5 foreach solutionS to the parent subproblem that does
not extend toVn do

6 Choose a valuev in S and remove it from the domain
of its variable.

7 recursively seek a BFR forPn−1:
8 If successful, report Success.
9 If not, make one different choice of a value to remove,

and recurse again.
10 When there are no more different choices to make,

report Failure.

processing a problem to achieve a backtrack-free representa-
tion by removing values, and prove that it will find such a
representation for any soluble binary CSP. We also suggest
refinements, heuristics and alternatives. In Section 3 we de-
scribe algorithm instantiations for obtaining a BFR, and study
their performance. We measure solution loss and preprocess-
ing effort as well as the effort saved during subsequent search.
In particular, we foresee the preprocessing as being of use in
an interactive CSP setting, where human users make the value
choices, e.g. for e-commerce product configuration, and con-
sider the savings the users gain, in avoiding tedious undoing
of choices or long processing delays, in return for restricting
the choices available. In Section 4, we discuss our experi-
mental result. In Section 5 we describe some interesting ex-
tensions to explore. In Section 6, we place this work in the
context of several broad themes in constraint computation.

2 Algorithm, Alternatives, and Analysis
We describe a basic algorithm for obtaining a BFR by delet-
ing values, prove it correct and examine its complexity. Given
a problemP and a variable search orderV1 to Vn, we will
refer to the subproblem induced by firstk variables asPk.
A variableVi is a parent ofVk if it shares a constraint and
i < k. We call the subproblem induced by the parents of
Vk theparent subproblemof Vk. Pn will be a backtrack-free
representation if we can choose values forV1 to Vn without
backtracking. BFRB operates on a problem and produces a
backtrack-free representation of the problem, if it is solvable,
else reports failure. We will refer to the algorithm’s removal
of solutions to the parent subproblem ofVk that do not extend
to Vk asprocessingof Vk.

The BFRB algorithm is quite straightforward. It works
its way upwards through a variable ordering, ensuring that
no trouble will be encountered in a search on the way back
down, as does adaptive consistency; but here difficulties are
avoided by removing values rather than adding (or refining)
constraints. (Of course, removing a value can be viewed as
adding/refining a unary constraint.)

However, correctness is not as obvious as it might first ap-
pear. It is clear that a BFR to a soluble problem must ex-
ist; any individual solution provides an existence proof: sim-
ply restrict each variable domain to the value in the solution.
However, we might worry that BFRB might not notice if the
problem is insoluble, or in removing values it might in fact
remove all solutions, without noticing it.

Theorem 1 If P is soluble, BFRB will find a backtrack-free
representation.

Proof: Proof by induction.
Inductive step: If we have a solutions to Pk−1 we can

extend it to a solution toPk without backtracking. Solution
s restricted to the parents ofVk is a solution to the parent
subproblem ofVk. There is a value,b, for Vk consistent with
this solution, or else it would have been eliminated by BFRB.
Adding b to s gives us a solution toPk, since we only need
worry about the consistency ofb with the parents ofVk.

Base step:P1 is soluble, i.e. the domain ofV1 is not
empty after BFRB. SinceP is soluble, lets be one solution,
with s1 as the value forV1. We will show that if it does
not succeed otherwise, BFRB will succeed by providing
a representation that includess1 in the domain ofV1. We
will do this by demonstrating, again by induction, that in
removing a solution to a subproblem,sp, BFRB will always
have a choice that does not involve a value ofs. Suppose
BFRB has proceeded up toVk without deleting any value
in s. It is processingVk and a solutionsp to the parent
subproblem does not extend toVk. If all the values insp are
in s, then there is a value inVk that is consistent with them,
namely the value forVk in s. So one of the values insp must
not be ins, and BFRB can choose at some point to remove
it. (The base step forVn is trivial.) Now since BFRB tries,
if necessary, all choices for removing values, BFRB will
choose eventually, if necessary, not to remove any value ins,
includings1. 2

Theorem 2 If P is insoluble, BFRB will report failure.

Proof: Proof by induction.
Pn = P is given insoluble. We will show that ifPk is

insoluble, then after BFRB processesVk, Pk−1 is insoluble.
Thus eventually BFRB will always backtrack whenP1 be-
comes insoluble (the domain ofV1 is empty) if not before,
and BFRB will eventually run out of choices to try, and re-
port failure.

SupposePk is insoluble. We will show thatPk−1 is insol-
uble in a proof by contradiction. Supposes is a solution of
Pk−1. Thens restricted to the parents ofVk, sp, is a solution
of the parent subproblem ofVk, which is a subproblem
of Pk−1. There is a valueb of Vk consistent withsp, for
otherwisesp would have been eliminated during processing
of Vk. But if b is consistent withsp, s plusb is a solution to
Vk. Contradiction.2

The space complexity of BFRB is polynomial in the num-
ber of variables and values, as we are only required to repre-
sent the domains of each variable. The worst-case time com-
plexity is, of course, exponential in the number of variables,



n. However, as we will see in the next section, by employ-
ing a “seed solution”, we can recurse without fear of failure,
in which case the complexity can easily be seen to be expo-
nential in (p + 1), wherep is the size of the largest parent
subproblem. Of course,p + 1 may still equaln in the worst
case; but when this is not so, we have a tighter bound on the
complexity.

3 Algorithm Instantiations
We can envision many potential improvements on the basic
BFRB algorithm. In this paper, we will investigate some basic
issues, describing more involved improvements in Section 5.

Using Seed Solutions.In the basic BFRB algorithm, it is
possible to remove all the values in the domain of a variable,
requiring the need to “backtrack” through the pruning choices
for completeness. We can avoid the need to backtrack by find-
ing an initial solution for the original CSP and using it as a
seed. We specify that we cannot remove any values in that
seed solution while searching for a BFR. There is a computa-
tional cost to obtaining the seed, and “protecting” it reduces
the flexibility we have in choosing which values to remove;
but we avoid thrashing when finding a BFR.

We performed preliminary experiments on the use of a seed
solution to find a BFR versus finding one from scratch. Our
results indicated that not only was using a seed significantly
faster, it also tended to produce a BFR which preserves more
solutions. Given the strength of these results, we only report
here on finding a BFR using a seed.

Enforcing Consistency. We expect a second sets of
improvements to arise from applying consistency algo-
rithms while searching for a BFR. We could establish arc-
consistency (AC) before starting the search for a BFR and/or
every time we prune a value. Since non-arc-consistent val-
ues may lead to dead-ends, establishing AC will reduce the
number of times that we must make a heuristic decision for
pruning.

We experimented with two uses of arc consistency: estab-
lishing AC once in a preprocessing step and establishing AC
whenever a value is pruned (line 6 of BFRB). The latter vari-
ation proved to incur less computational effort as measured in
the number of constraint checks to find a BFR and resulted in
BFRs which retained more solutions. In our experimental re-
sults, therefore, we only show results where AC is established
whenever a value is pruned.

Using Pruning Heuristics.The selection of the value to
be pruned to remove a dead-end may benefit from heuristics.
It is unclear how the standard CSP heuristics (e.g., based on
domain size and degree) will transfer to BFRB, but it is rea-
sonable to expect that there will be some impact in preferring
to prune different values. Two heuristics (line 6 of BFRB),
together with their corresponding anti-heuristic, are tested in
this paper based on the following characteristics:

Domain Size.As in heuristics for finding a solution to a
CSP, we expect that the size of the domain of the variable
whose value we remove will have an impact on the qual-
ity of the BFR produced. A value in the minimum domain
is likely to participate in a larger proportion of both the re-
maining dead-ends and solutions than a value in a larger do-

main. Therefore, it is unclear whether the minimum domain
heuristicMinDom or the maximum domain heuristicMax-
Domshould be expected to perform better.Degree.The de-
gree of variables in the constraint graph is also a component
of existing CSP heuristics. Removing a value from a vari-
able of high degree will have an impact on more of the other
variables in the problem than doing so from a variable of low
degree. This impact may be to add or remove dead-ends. We
cannot, a priori, predict whether the maximum degree heuris-
tic, MaxDeg, or the minimum degree heuristic,MinDeg, will
produce better BFRs.

To provide a baseline for comparison we also experiment
with selecting the value to be removed randomly, in theRan-
dom “heuristic”. For all heuristics, ties are broken lexico-
graphically.

Since we are using a seed solution, the pruning heuristic
is restricted by the fact that a value in the seed solution is
never removed. If the heuristically preferred value occurs in
the seed solution, the next most preferred value is pruned. We
are guaranteed that at least one parent will have a value that is
not part of the seed solution or else we would not have found
a dead-end.

Probing to Find Good BFRs.Since we want BFRs to re-
tain as many solutions as possible, it is useful to model the
finding of BFRs as an optimization problem rather than as a
satisfaction problem. We envision a number of ways to do
this, for example, by performing a branch-and-bound to find
the BFR that retains the maximum number of solutions. In
this paper, we will take advantage of the fact that we gen-
erate BFRs starting with a seed solution to introduce a sim-
ple probing algorithm. For a given seed solution, a BFR is
generated and the number of solutions retained are counted.
The search for a BFR is then restarted from a random seed
solution. This process is continued until no improving BFR
could be found in 1000 such iterations. This technique is, of
course, incomplete, however, we are interested to investigate
how much improvement we can achieve over the satisfaction
algorithms.

4 Experiments
The purpose of this section is to evaluate the basic idea of
finding a BFR through pruning values and to perform prelim-
inary investigations of some of the algorithm variations noted
above. Our basic interests are to look at the on-line process-
ing effort that will be saved by using a BFR rather than the
original problem representation, the solutions lost by remov-
ing values, and the effort required to find a BFR.

To evaluate our algorithm instantiations, we generated
problems with 15 variables with 10 values in each domain.
One problem set contains sparse instances (density = 0.3)
while the other contains dense problems (density = 0.7). For
each of these sets, we identified a range of tightness values
that allowed us to span the phase transition region from the
easy soluble problems, across the hardness ridge, to the (rel-
atively) easy insoluble problems. Since a BFR is only well-
defined in a soluble problem, for each combination of density
and tightness we generated 100 soluble problem instances
by filtering out the insoluble problems. Table 1 presents the



range of tightness values used in each of the problem sets.
We solved the problems with MAC[9] using lexicographic

search order, which is effectively a random search order. In
the interactive settings we envision the search order cannot
necessarily be chosen for efficient search: the chemicals may
need to be mixed in a specific order, the rockets may need to
be fired in a specific order, choice may be based on prefer-
ence or cost. Table 1 presents the mean and median number
of backtracks in finding an initial solution. This initial so-
lution is then used as a seed in the search for a BFR, which
will allow users to avoid any backtracking when interactively
seeking solutions. Even if we consider problems that do per-
mit a more efficient search order to be used, even moderately
difficult problems will still require far more backtracks than
we can expect a human user to tolerate in an interactive set-
ting.

Sparse (Density = 0.3) Dense (Density = 0.7)
Tightness mean BTs median BTs Tightness mean BTs median BTs
0.5 9.64 3.5 0.30 7 4
0.51 6.24 3 0.31 12.49 7
0.52 4.89 3 0.32 19.05 15
0.53 6.93 4 0.33 26.59 20
0.54 5.52 4 0.34 31.81 23
0.55 6.21 4 0.35 24.59 19
0.56 4.28 3 0.36 24.78 20
0.57 2.93 2 0.37 17.19 14
0.58 2.98 2 0.38 13.46 11.5
0.59 3.05 3 0.39 8.90 8
0.6 2.16 1 –

Table 1: The tightness of each problem sub-set for the sparse
and dense problems and the mean and median number of
backtracks required for MAC with lexicographic variable and
value ordering to find a first solution.

4.1 Satisfaction Results
Using the first solution found, we then found a BFR with each
of the one-seed algorithm instantiations. Since we are using
a seed, we already have a BFR. However, for the purposes
of comparison, we consider that a BFR has been found when
algorithm BFRB terminates. We then count the number of so-
lutions of the original problem, that are still solutions to the
BFR: that is, the number of solutions that have value assign-
ments that are in the domains of the BFR representation.

Figure 1(a) presents the relative number of solutions re-
tained for each of the algorithm instantiations on the sparse
problem set. On the tighter problems, the best heuristic is
able to find BFRs which retains more than 80% of the solu-
tions in the original problem. On the loose problems, which
have many solutions, a small percentage are retained however
even for tightness of 0.52, the best heuristic finds BFRs re-
taining more than 30% of the solutions. From the perspective
of the heuristics, MaxDeg and MinDom out-perform Min-
Deg and MaxDom respectively. In general, the range from
the best heuristic to the worse appears to be about 10% of the
solutions in the original problem.

Figure 1(b) presents the relative number of solutions re-
tained on the dense problem set. In general, it appears that
the fraction of solutions retained is lower on the dense prob-
lem set than on the sparse one, however, for the tightest half
of the problem set, on average at least 60% and up to 95%

0

0.2

0.4

0.6

0.8

1

0.5 0.52 0.54 0.56 0.58 0.6

fr
ac

tio
n 

of
 s

ol
ut

io
ns

 r
et

ai
ne

d

tightness

MaxDom
MinDom
MinDeg

MaxDeg
Random

(a) Sparse Problems

0

0.2

0.4

0.6

0.8

1

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39
fr

ac
tio

n 
of

 s
ol

ut
io

ns
 r

et
ai

ne
d

tightness

MaxDom
MinDom
MinDeg

MaxDeg
Random

(b) Dense Problems

Figure 1: The mean number of solutions retained in the BFR
representations of the sparse problem set relative to the num-
ber of solutions for the original problem.

of the solutions are retained with a single BFR. The relative
performance of the heuristics is similar to that on the sparse
problem set with MaxDeg and MinDom dominating.

The effort to find a BFR is assessed in Figure 2, where the
number of constraint checks for each algorithm instantiation
are displayed. The largest difference between heuristics is
on the loose problems where MaxDom incurs over twice as
many constraint checks as MaxDeg. Interestingly, the heuris-
tics that retain more solutions also spend less effort in finding
a BFR. The data is noisier for the sparse set, however, the rel-
ative performance of the heuristics is similar with the number
of constraint checks being an order of magnitude lower. This
is reasonable as the size of each subproblem is smaller.

4.2 Optimization Results
While successful in retaining a large percentage of the so-
lutions, especially, on the tighter problems, the satisfaction
algorithms did not attempt to find a good BFR: the first satis-
fying BFR was reported. Figure 3 demonstrates that substan-
tially better performance can be achieved by using the heuris-
tics within a simple probing algorithm. For the loosest prob-
lems, where the satisfaction algorithms performed worse, the
optimization algorithms are able to find BFRs that on average
retain an order of magnitude more solutions than the satis-
faction algorithms. On the tighter problems, the advantage



40000

60000

80000

100000

120000

140000

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39

ef
fo

rt
 to

 fi
nd

 B
F

R
 (

in
 c

on
st

ra
in

t c
he

ck
s)

tightness

MaxDom
MinDom
MinDeg
MaxDeg
Random

Figure 2:Dense ProblemsThe mean number of consistency
checks required to find a BFR starting from a seed solution.

for the optimization algorithms continues to be apparent as
almost all solutions are retained for the tightest problems.

5 Future Work
This paper represents initial experiments with BFRs. Clearly
there are a number of extensions to be explored. More re-
search is needed in the area of heuristics as we have demon-
strated that much better BFRs exist than are discovered with
the heuristics we used. More generally, though, by changing
our assumptions about the on-line processing, we can also
expand the set of techniques applied in finding the BFR. For
example, so far we have assumed that the on-line algorithm
is simple backtracking with no consistency enforcement. If
we make assumptions that we will use forward checking or
MAC on-line, we can remove fewer dead-ends off-line and
lose less solutions. Dead-ends that will not be encountered
by the on-line algorithm do not have to be removed off-line.
This means, in fact, that a backtrack-free representation is
backtrack-free with respect to the on-line algorithm: a BFR
built for MAC will not be a BFR for backtracking (though
the converse is true). It is a relatively easy transformation
of BFRB to ensure that only those dead-ends that exist for a
specific on-line algorithm will be pruned.

A different, though complementary, direction for further
research is in storing more than one BFR for a problem in-
stance. The tighter a problem is, the smaller the number of
solutions can be represented in a single BFR. However, if we
maintain a limited set of BFRs, we could still achieve poly-
nomial space complexity, backtrack-free on-line search, and
significantly broader solution coverage. For example, if we
storedn× d BFRs, we could ensure that every globally con-
sistent value of every variable was represented in at least one
BFR.

Finally, in a real application some BFRs will be more pre-
ferred than others, perhaps, not simply based on the num-
ber of solutions retained. In a configuration application, it
is likely that the vendor will have some guidance as to the
attributes he/she would like to have in the most common so-
lutions. This suggests that it would be very useful to be able
to reason about soft constraints, preferences, or other opti-
mization criteria while building a BFR or, more generally, to

1

10

100

1000

0.5 0.52 0.54 0.56 0.58 0.6

nu
m

be
r 

of
 s

ol
ut

io
ns

 r
et

ai
ne

d

tightness

all solutions
Iter1000rand

Iter1000MaxDeg
MinDeg
MaxDeg

(a) Sparse Problems

1

10

100

1000

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39

nu
m

be
r 

of
 s

ol
ut

io
ns

 r
et

ai
ne

d

tightness

all solutions
Iter1000rand

Iter1000MaxDeg
MaxDom
MaxDeg

(b) Dense Problems

Figure 3: Using a log-scale we plot the mean number of so-
lutions in the original problem, the mean number of solutions
retained by the best and worst algorithm instantiations, and
the mean number of solutions retained by two variations of
the probing technique.

be able to find a BFR for constraint optimization problems.

6 Context
The work on BFRs presents a perspective on a number of
fundamental dichotomies in constraint processing.

BFR vs. Adaptive Consistency.BFRB can be viewed as
one extreme on a spectrum that has adaptive consistency[3]
at the other end. Our BFR algorithm could be termed a 1-BFR
algorithm, building a BFR by adding or altering unary con-
straints (removing values). A 2-BFR algorithm would add
or alter binary constraints when possible, rather than unary
ones, and could thus achieve a BFR while removing fewer
solutions. In general, we havek-BFR, wherek is the “in-
duced width” in the case of adaptive consistency, which in
the worst case isn − 1 for ann variable problem. Ask in-
creases, we suffer less solution loss, but incur a greater space
cost. Further work is needed to explore the trade-offs here.

Inference vs. Search.As in many aspects of constraint
computation, the axis that runs from inference to search is
relevant for BFRs. The basic BFR algorithm allows us to per-
form pure search online without fear of failure. BFRs for on-
line algorithms that use some level of inference require more
online computation while still ensuring no backtracks and



preserving more solutions. It would be interesting to study
the characteristics of BFRs as we increase the level of online
consistency processing we are willing to do.

Implicit vs. Explicit Solutions.BFR models can be viewed
along a spectrum of implicit versus explicit solution represen-
tation, where the original problem lies at one end, and the set
of explicit solutions at the other. The work on “bundling” so-
lutions provides compact representations of sets of solutions.
Hubbe & Freuder[7] represent sets of solutions as Cartesian
products, each one of which might be regarded as an extreme
form of backtrack-free representation. If we restrict the vari-
able domains to one of these Cartesian products, every combi-
nation of choices is a solution. All the solutions can be repre-
sented as a union of these Cartesian products, which suggests
that we might represent all solutions by a set of distinct BFRs.
As we move toward explicit representation the preprocessing
cost rises. Usually the space cost does as well, but 1-BFR
representations are an exception that lets us “have our cake
and eat it too”.

Removing values vs. Search.Removing values is related
in spirit to work on domain filtering consistencies[2] though
these do not lose solutions. Another spectrum in which BFRs
play a part therefore is based on the number of values re-
moved. We could envision BFRB variations that remove
fewer values, allowing more solutions, but also accepting
some backtracking. Freuder & Hubbe[6] remove solutions
in another manner, though not for preprocessing, but simply
in attempting to search more efficiently. Of course, a large
body of work on symmetry and interchangeability does this.

Offline vs. Online Effort.BFRs lie at one end of an axis that
increasingly incorporates offline preprocessing or precompi-
lation to avoid online execution effort. These issues are espe-
cially relevant to interactive constraint satisfaction, where hu-
man choices alternate with computer inference, and the same
problem representation may be accessed repeatedly by differ-
ent users seeking different solutions. They may also prove
increasingly relevant as decision making fragments among
software agents and web services. Amilhastre et al.[1] have
recently explored interactive constraint solving for configura-
tion, compiling the CSP offline into an automaton represent-
ing the set of solutions.

“Customer-centric” vs. “Vendor-centric” Preferences.As
constraints are increasingly applied to online applications,
the preferences of the different participants in a transaction
will come to the fore. It will be important to bring soft con-
straints, preferences and priorities, to bear on BFR construc-
tion to address the axis that lies between “customer-centric”
and “vendor-centric” processing. For example, a customer
may tell us, or we may learn from experience with the cus-
tomer, that specific choices are more important to retain. Al-
ternatively, a vendor might prefer to retain an overstocked op-
tion, or to remove a less profitable one.

7 Conclusion
We have presented an approach to obtaining a backtrack-free
CSP representation (BFR) that does not require additional
space. We investigated a number of variations on the basic
algorithm for finding BFRs including the use of seed solu-

tions, arc-consistency, and a variety of pruning heuristics. We
have evaluated experimentally the cost of obtaining a BFR,
the solution loss, and the execution time savings, for different
problem parameters.

Overall, our results indicate that a significant proportion
of the solutions to the original problem can be retained es-
pecially when an optimization algorithm that specifically
searches for such “good” BFRs is used. We expect that such
performance can be improved, particularly with the increased
use of consistency algorithms, the maintenance of multiple
BFRs, and the use of more sophisticated optimization tech-
niques.

Finally, we noted that the BFR concept provides an inter-
esting perspective on a number of theoretical and practical
dichotomies within the field of of constraint programming.
Given these dichotomies and the potential for BFRs estab-
lished in this paper, we feel that we have opened up a rich
vein of research to explore.

References
[1] J. Amilhastre, H. Fargier, and P. Marquis. Consistency

restoration and explanations in dynamic CSPs – appli-
cation to configuration. Artificial Intelligence, 135(1-
2):199–234, 2002.

[2] R. Debruyne and C. Bessière. Domain filtering consisten-
cies.Journal of Artificial Intelligence Research, 14:205–
230, May 2001.

[3] R. Dechter and J. Pearl. Network-based heuristics for
constraint-satisfaction problems.Artificial Intelligence,
34(1):1–38, 1987.

[4] E.C. Freuder. A sufficient condition for backtrack-free
search.Journal of ACM, 29(1):24–32, 1982.

[5] E.C. Freuder. Complexity ofk-tree-structured constraint-
satisfaction problems. InProceedings of the Eighth Na-
tional Conference on Artificial Intelligence (AAAI-90),
pages 4–9, 1990.

[6] E.C. Freuder and P.D. Hubbe. Using inferred disjunctive
constraints to decompose constraint satisfaction prob-
lems. InProceedings of the Thirteenth International Joint
Conference on Artificial Intelligence (IJCAI-93), pages
254–261, 1993.

[7] P.D. Hubbe and E.C. Freuder. An efficient cross-
product representation of the constraint satisfaction prob-
lem search space. InProceedings of the Tenth National
Conference on Artificial Intelligence (AAAI-92), pages
421–427, 1992.

[8] N. Muscettola, P. Morris, and I. Tsamardinos. Reformu-
lating temporal plans for efficient execution. InPrinci-
ples of Knowledge Representation and Reasoning, pages
444–452, 1998.

[9] D. Sabin and E.C. Freuder. Contradicting Conventional
Wisdom in Constraint Satisfaction. InProceedings of the
Eleventh European Conference on Artificial Intelligence
(ECAI-94), pages 125–129, 1994.


