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Abstract

We study an unrelated parallel machines scheduling problem
with sequence and machine dependent setup times. A logic-
based Benders decomposition approach is proposed to mini-
mize the makespan. The decomposition approach is a hybrid
model that makes use of a mixed integer programming master
problem and a travelling salesman problem subproblem. The
master problem is a relaxation of the problem and is used to
create assignments of jobs to machines, while the subprob-
lem obtains optimal schedules based on the master problem
assignments. Computational results comparing the Benders
decomposition and mixed integer program formulation show
that the Benders model is able to find optimal solutions to
problems up to five orders of magnitude faster as well as solv-
ing problems four times the size possible previously.

1 Introduction
In many practical scheduling problems, the scheduler is
faced with both resource alternatives and sequence depen-
dent setup times. That is, a job may be assigned to one
of a set of resources and consecutive jobs on the same re-
source must have a minimum setup time between them.
For example, in a chemical plant, reactors must be cleaned
when changing from processing one mixture to another. The
cleaning times may depend on which specific job comes
before the cleaning and which comes after. If the preced-
ing chemical affects the succeeding one, cleaning may take
longer to ensure that the reactor is properly prepared. The
products processed in the reverse order may not have the
same ill effects because the offending product in the previ-
ous example may not suffer the same contamination and so,
cleaning may take less time. Further examples can be found
in the plastic, glass, paper and textile industries where setup
times of significant length exist (França et al. 1996). Al-
lahverdi et al.(1999) review the importance of setup times in
real world problems.

This paper addresses the unrelated parallel machines
scheduling problem (PMSP) with machine and sequence de-
pendent setup times. In this problem, jobs must be assigned
to one of a set of alternative resources. Jobs assigned to the
same resource have a setup time which is defined as the time
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that must elapse between the end of one job and the start
of the next. This setup time is sequence and machine de-
pendent in that the elapsed time between jobs j and k will
differ depending on whether j precedes k or k precedes j and
which machine the pair of jobs are assigned to. We concern
ourselves with minimizing the makespan or the maximum
completion time of a schedule, Cmax, as the objective func-
tion. Using the three-field notation given by Graham et al.
(1979), this problem can be denoted as (R|sds|Cmax).

We develop an exact method to solve the PMSP based on
logic-based Benders decomposition. This approach was de-
veloped to verify logic circuits by Hooker (1995) and further
explained later (Hooker and Ottosson 2003). Hooker (2005)
applied logic-based Benders decomposition to a problem
similar to the PMSP with release and due dates, but with-
out setup times. The Benders decomposition introduced in
this paper makes use of a Mixed Integer Program (MIP)
master problem and either a Constraint Program (CP) solver
or a specialized Travelling Salesman Problem (TSP) solver
for the subproblems. The MIP model is used to find tight
lower bounds and machine assignments, while the CP or
TSP solvers sequence the jobs on machines. The new model
is compared to an existing MIP model which finds the opti-
mal solution.

2 Background
In this section, we will define the PMSP with sequence and
machine dependent setup times. A review of related work
is presented and finally, an existing MIP model to solve the
PMSP is shown.

2.1 Problem Definition
In the PMSP, a set of N jobs are to be scheduled on M ma-
chines with the objective of minimizing the makespan. Each
job has a processing time pij , the time to process job j on
machine i. The machines in this system are unrelated, i.e.,
a job j can have a processing time greater than k on one
machine, but the reverse could be true on another machine.
There is a sequence and machine dependent setup time, sijk,
which is the time that must elapse before a machine can
begin processing job k if job j precedes it on machine i.
The setup times are assumed to follow the triangle inequal-
ity sijk ≤ silk + sljk and are only incurred when switching



from one job to another. The goal of the problem is to de-
termine how to assign jobs to machines and then sequence
these jobs, independently on each machine.

2.2 Related Work
Most research has been focused on the PMSP with identical
machines (Graves 1981; Cheng and Sin 1990; Dunstall and
Wirth 2005; Kurz and Askin 2001). Research on the PMSP
with unrelated machines has concentrated on the problem
without setup times. An exact algorithm was developed
by Lancia (2000) to minimize makespan. A genetic algo-
rithm, simulated annealing, and tabu search were compared
by Glass et al. (1994).

The PMSP with sequence and machine dependent setup
times is strongly NP-Hard because the single machine
scheduling problem with sequence dependent setup times
(1|sds|Cmax) is equivalent to a travelling salesman problem
(TSP) (Baker 1974). Thus, the PMSP with setup times can
be thought of as an allocation and routing problem where
cities are allocated to salesmen who then must find their
own tour. Even in the case where all machines are identical
(P|sds|Cmax), the problem is strongly NP-hard (França et
al. 1996; Mendes et al. 2002). The combinatorial complex-
ity of the PMSP has resulted in little research in exact opti-
mization methods. A MIP model does exist (Guinet 1991)
which obtains the optimal schedule for the PMSP with setup
times with total completion time or total tardiness as objec-
tives. However, this MIP model is only able to solve for
small instances:9 jobs, 2 machines or 8 jobs, 4 machines.
The sizes of these problems are not very practical for real
life use where the number of jobs can be much larger.

Al-Salem (2004) developed a constructive heuristic
named the partitioning heuristic to solve large instances of
the PMSP with setup times. Helal et al. (2006) developed a
tabu search to solve the same problem. Rabadi et al.(2006)
presented a meta-heuristic titled Meta-RaPS to minimize
makespan. An ant colony optimization method was im-
plemented and shown to perform better then the partition-
ing heuristic, tabu search, and Meta-RaPS for the unrelated
PMSP with setup times (Arnaout, Rabadi, and Musa 2008).
In all these studies, optimal makespans were not the goal be-
cause the problem sizes were too large for current methods
to find optimality. The performance of the heuristics was
evaluated by comparison of the solutions they provided with
lower bounds on the makespan for any instances with more
than 10 jobs. All heuristics tested performance for instances
of sizes up to 100 jobs and 10 machines; Rabadi et al. (2006)
and Arnaout et al. (2008) tested problems of 120 jobs and
12 or 8 machines respectively.

Focacci et al. (2000) proposed a two phase algorithm
based on CP to optimize both the makespan and the sum
of setup times for a similar problem to the PMSP with se-
quence dependent setup times. In this paper, jobs consist
of multiple activities and precedence constraints exist be-
tween these activities. In the first phase of the algorithm, a
time limited, incomplete branch-and-bound method is used
to find solutions with small makespan. The second phase
minimizes the sum of setup times with the constraint that
any schedule found must have a makespan equal to or less

than the makespan found in the first phase. They run their
model on problems of up to 16 jobs, each consisting of 12
activities, and 16 machines.

2.3 Mixed Integer Programming Model
A MIP model used to find optimal solutions for the unrelated
PMSP with setup times is presented by various researchers
(Helal, Rabadi, and Al-Salem 2006; Rabadi, Moraga, and
Al-Salem 2006). This formulation is based on a similar
problem by Guinet (1991) with different objectives of total
completion time or total tardiness.

min Cmax

s.t.

N∑
j=0,j 6=k

M∑
i=1

xijk = 1, k ∈ N (1)

N∑
j=0,j 6=h

xijh =

N∑
k=0,k 6=h

xihk, h ∈ N, i ∈M (2)

Ck ≥ Cj +

M∑
i=1

xijk(sijk + pik) + V (

M∑
i=1

xijk − 1)

j ∈ N, k ∈ N (3)

N∑
j=0

xi0j = 1, i ∈M (4)

Cj ≤ Cmax, j ∈ N (5)

C0 = 0 (6)

Cj ≥ 0, j ∈ N (7)

xijk ∈ (0; 1), j ∈ N,
k ∈ N, i ∈M (8)

where
Cmax: Maximum completion time (makespan)
Cj: Completion time of job j
xijk: 1 if job k is processed directly after job j on

machine i
xi0k: 1 if job k is the first job to be processed on

machine i
xij0: 1 if job j is the last job to be processed on

machine i
si0k: setup time before job k if it is the first job on

machine i
V: A large positive number

Constraint (1) ensures that each job is scheduled on a sin-
gle machine only and after exactly one other job. Constraint
(2) ensures that each job cannot be preceded or succeeded
by more than one job. Constraint (3) sets the completion
times of each job such that if job j precedes job k, job k can-
not also precede job j to create an infeasible cycle. If job
k is processed directly after job j,

∑M

i=1
xijk − 1 = 0 and



the constraint makes it so that Ck ≥ Cj + sijk + pik with i
being the machine on which the two jobs are assigned. If
job k is not scheduled directly after job j on a machine,∑M

i=1
xijk − 1 = −1 and the large V term makes the con-

straint redundant. Constraint (4) guarantees that only one
job can be scheduled first on each machine. Constraint (5)
sets the makespan to be at least as large as the largest com-
pletion time of all jobs. Constraint (6) sets the completion
time of job 0, an auxiliary job used to enforce the start of
a schedule, to zero and constraint (7) ensures positive com-
pletion times. Constraint (8) defines the decision variables
as binary.

3 Logic-Based Benders Decomposition
The PMSP with setup times can be decomposed into an as-
signment master problem and sequencing subproblem. In
the assignment master problem, the jobs are assigned to ma-
chines. This assignment results in multiple subproblems
where each machine is a scheduling problem to sequence
the assigned jobs. A MIP model is presented for the master
problem. The use of MIP takes advantage of operations re-
search tools to obtain tight lower bounds on the PMSP with
setup times. Sequencing is accomplished in the subproblem
where CP and TSP solvers are more adept to obtaining an-
swers quickly.

3.1 Assignment Master Problem
The MIP formulation of the master problem is a relaxation
of the PMSP with setup times. In this relaxation, jobs are
assigned to machines, but instead of solving for a single se-
quence of jobs on each machine, many smaller subsequences
are allowed. The setup times are calculated for each subse-
quence; their sum is a lower bound on the actual total setup
time on a machine. This assignment and subsequencing
leads to an infeasible schedule if multiple subsequences are
created. However, the relaxation gives a tighter lower bound
than if setup times are completely ignored, while being sig-
nificantly less difficult than the full problem. The master
problem is,

min Cmax

s.t.
∑
j∈N

xijpij + ξi ≤ Cmax i ∈M (9)

∑
i∈M

xij = 1 j ∈ N (10)

ξi =
∑
j∈N

∑
k∈N,k 6=j

yijksijk i ∈M (11)

xik =
∑
j∈N

yijk k ∈ N ; i ∈M (12)

xij =
∑
k∈n

yijk j ∈ N ; i ∈M (13)

cuts (14)

xij ∈ {0; 1} j ∈ N ; i ∈M (15)

0 ≤ yijk ≤ 1 j, k ∈ N ; i ∈M (16)

where
Cmax: Makespan of the master problem

ξi: Total setup time incurred from all sequences
on machine i

xij: 1 if job j is processed on machine i
yijk: 1 if job k is processed directly after job j on

machine i
yi0k: 1 if job k is processed first on machine i
yij0: 1 if job j is process last on machine i

The makespan on each machine with the relaxed setup
times is defined in constraint (9) as the summation of pro-
cessing times for all jobs that are assigned to that machine
and the relaxed total setup times. Setting the makespan to
be greater than or equal to the relaxed makespan of each
machine enforces that the MIP model optimizes the maxi-
mum makespan across all machines. Constraint (10) ensures
that each job is assigned to exactly one machine. Constraint
(11) assigns the relaxed setup time of a machine i, ξi, to be
a lower bound on the additional time required from the se-
quencing of jobs, yijk, and their respective setup times, sijk.
The relaxation of setup times allows, instead of a sequence
of jobs from the first to last job processed on a machine,
many smaller sequences independent of each other. For ex-
ample, given jobs j, k, j3, j4, and j5, a feasible sequence is
[start - j - k - j3 - j4 - j5 - end]. However, (12) and (13)
set each job to have exactly one other job scheduled directly
before and after it without the restriction of cycles as was
seen in constraint (3). This will make it possible to assign
two sequences, [start - j - k - j3 - end] and the cycle [j4 -
j5 - j4 - j5...]. Constraint (14) are cuts added to the master
problem from the subproblem each time an infeasible solu-
tion is found. In the first iteration of the master problem, the
set of cuts is empty. The last constraints, (15) and (16), force
the decision variables xij to be binary, i.e., either a job j is
assigned machine i or not and yijk to be between 0 and 1.

This formulation is equivalent to solving the
(R|sds|Cmax), but instead of solving for the exact sin-
gle sequence of jobs to process on a machine, many
subsequences are allowed which will include all jobs.
This relaxation creates a tight lower bound for the actual
makespan of a machine and is similar to solving the
assignment problem. Therefore, the makespan found from
solving the master problem may be infeasible given a proper
sequencing of jobs.

3.2 Sequencing Subproblem
Once a solution of the master problem is found, the set of
jobs to schedule on each machine is known. These sets
of jobs create m subproblems, one for each machine. In
this section, two different subproblem formulations are pre-
sented: a CP and a TSP model. Both models will create a
sequence of jobs on a machine such that the makespan is



minimized. This objective can also be thought of as mini-
mizing the sum of setup times since the set of jobs to be pro-
cessed and their processing times are already determined.

Constraint Program Let tj and ej be the start and end
times for job j respectively. Chi

max represents the makespan
for machine i in iteration h. The CP formulation of the sub-
problem is shown below.

min Chi
max

s.t. tj + pij = ej j ∈ N ′ (17)

tj ≥ ek + sijk ∨ tk ≥ ej + sjk k, j ∈ N ′; k 6= j (18)

t0 = 0 (19)

disjunctive(tj , pij) (20)

The objective of the subproblem is to sequence the jobs
in such a way as to minimize the makespan. The set of jobs
to schedule is N ′ which are the jobs chosen in the master
problem with an additional auxiliary job (job 0) which has
setup times and processing times equal to 0. This extra job
acts as the first job in the sequence which incurs no setup
times for the job that is scheduled after it. Constraint (17)
sets the end time of each job to be the start time plus the
processing time. Constraint (18) ensures that setup times
are adhered to. If a job k is processed directly after a job
j, then constraint (18) becomes an equality constraint. In
the case where job k is not directly processed after a job j,
but still processed later, the constraint holds given that setup
times adhere to the triangle inequality. Constraint (19) sets
the start time of job 0 to zero. Finally, constraint (20) is a
global constraint that ensures the unary resource constraint
is satisfied.

We implement this model in IBM ILOG Scheduler. Each
job is an activity in IBM ILOG Scheduler, represented by
the variables tj and ej . The machine that these jobs are as-
signed to is represented by a unary resource and the setup
times, sjk, are assigned as the elements of an IloTransition-
Param matrix. The IloTransitionParam matrix is an asym-
metric square matrix that defines the sequence dependent
setup times in IBM ILOG Scheduler for each activity pair.

Travelling Salesman Problem We know that the se-
quencing of jobs on a single machine is equivalent to a TSP
with directed edges, also known as an asymmetric TSP. In
this TSP, jobs are the nodes and distances between nodes
are the setup time between the two connected jobs and the
processing time of the job which is the start node. This rep-
resentation ensures that travelling along any edge from node
a to node b will contribute the cost of processing job a and
the setup time from job a to job b. With this translation, it is
possible to see that the setup time problem on a single ma-
chine is equivalent to a TSP and a cycle of a TSP from a
start node to all other nodes and back to the initial start node
is the sequence of jobs to process and the distance travelled
being the makespan. This representation is shown in Figure
1.

Figure 1: TSP representation

It can be seen that if the order of jobs to be processed is 1,
3 then 2, the distance travelled would be, p1+s13+p3+s32+
p2. This tour distance is equal to the makespan of processing
jobs in that order. Therefore, it may be better to use a TSP
solver which has been optimized to solve such problems in
place of a generic CP solver which is more expressive, but
not as good at solving this problem.

Feasible Schedules from the Subproblem Solving the
sequencing subproblem leads to a feasible schedule. Of-
ten with Benders decomposition, a model is searching in the
infeasible region of solutions and the first feasible solution
found is the optimal one. In our logic-based Benders decom-
position approach, while the search is performed in the in-
feasible region, the sequencing subproblem solves the local
schedule once the jobs are allocated to machines. The so-
lution from the subproblem creates a feasible schedule with
a makespan equal to the largest makespan found across all
subproblems. Therefore, it is possible to stop the solving at
any time after the first complete iteration and obtain a feasi-
ble schedule. This schedule may not be optimal if the prob-
lem solving is stopped prematurely. However, it is possible
to compare this value against the makespan found from the
most recent master problem solution to calculate an upper
bound on how far the current schedule is from optimality.
Therefore, the Benders decomposition will store the best so-
lution found so far. At the completion of all subproblems
during an iteration, the schedule created will be compared
to the best solution found so far and it will be updated if
necessary.

3.3 Cuts
If the makespan found in the subproblem is less than or equal
to the master problem’s makespan Cmax, then this subprob-
lem is feasible and no cuts are added to the master problem.
In the case where the makespan found is greater than Cmax,
a cut is created and sent to the master problem. The master
problem is then re-solved with the added cut. The cut from
such a subproblem in an iteration h is,

Cmax ≥ Chi∗
max[1−

∑
j∈N′

(1− xij)] i ∈M (C1)



Here, Cmax is the makespan variable in the master prob-
lem and Chi∗

max is the makespan found in iteration h when
solving the subproblem for machine i. The cut states that
the future solutions of the master problem can only decrease
the makespan if another assignment of jobs is given. That
is, if the same assignment is given to the subproblem, the
xij variables that are part of this cut will all equal to 1. If
this is the case, then (1−xij) = 0 for all j and the makespan
of the subproblem becomes a lower bound on Cmax. When
a different assignment is made and at least one of the xij

variables that previously had a value of 1 is 0, the cut be-
comes redundant as the right hand side will be at most zero.
This cut follows the 2 conditions defined by Chu and Xia
(2005) to be a valid cut; the cut removes the current solution
from the master problem and does not eliminate any global
optimal solutions.

The cut presented is a type of nogood cut (Hooker 2005),
stating that the current solution is infeasible and so is re-
moved from the search space. We can tighten the cut
by introducing the values minPrehj , minSuchj , maxPrehj ,
maxSuchj and minTranhj . minPrehj and maxPrehj are the
minimum and maximum setup times if job j directly suc-
ceeds another job that is assigned to the same machine in
iteration h respectively. Similarly, minSuchj and maxSuchj

are the minimum and maximum setup times if job j directly
precedes another job that is assigned to the same machine in
iteration h. Finally, minTranhj is the minimum setup time
between any two jobs in N ′ excluding job j. These values
are defined as,

minPrehj =MINk∈N′;k 6=j(sikj)

minSuchj =MINk∈N′;k 6=j(sijk)

maxPrehj =MAXk∈N′;k 6=j(sikj)

maxSuchj =MAXk∈N′;k 6=j(sikj)

minTranhj =MINk∈N′;l∈N′;k 6=l(sikl)

A cut that uses more information is to find a tight upper
bound on the total reduction of the makespan when a job
is removed from a schedule. To find this upper bound, we
work backwards and calculate the increase in the makespan
if job j is added to an optimal sequence consisting of the
jobs in N ′ except j. Assume that the optimal makespan of
the schedule, C′, is known. If job j is inserted into the sched-
ule greedily, the insertion may occur at either a position that
minimizes the setup time to job j or from job j. In the worst
case scenario, if the insertion that occurred to minimize the
setup to (from) job j, the job that succeeds (precedes) j may
result in the largest setup time from (to) job j. This insertion
will further remove a single setup time since job j may be
scheduled between any two other jobs. In the worst case,
the removed setup time is the minimum setup time between
any two jobs in N ′. We know that this insertion results in a
feasible schedule and in the best case will give the optimal
makespan for scheduling N ′. The increase in makespan of
adding job j is denoted as δhij . We know that,

Chi∗
max ≤ C′ + δhij

which rearranged is,

C′ ≥ Chi∗
max − δhij

Therefore, if the optimal makespan of a schedule consisting
of all jobs in N ′ is known, removing δhij from the optimal
makespan is guaranteed to result in a makespan less than or
equal optimal if job j is removed. The cut can then be,

Cmax ≥ Chi∗
max −

∑
j∈N′

(1− xij)δhij i ∈M (C2)

where,

δhij = pij −minTranhj

+MIN [(minPrehj + maxSuchj),
(maxPrehj + minSuchj)]

A third cut is developed to further improve upon (C2).
This cut attempts to not only include extra information about
the jobs being assigned, but also account for the jobs that are
not assigned to the subproblem machine. This is done by
incrementing the makespan by the processing time of a job
if that job is to be assigned to a machine. The cut is then,

Cmax ≥ Chi∗
max +

∑
k/∈N′ xikpik

−
∑

j∈N′(1− xij)δhij i ∈M (C3)

3.4 Stopping Condition
The Benders approach will iterate between master prob-
lem and subproblems until an optimal solution is found and
proved. Optimality is proven if one of two conditions is met.
The first condition that can prove optimality is if all subprob-
lems solved during an iteration find makespans less than or
equal to the Cmax from the master problem. This solution is
optimal because the master problem provides a lower bound
on the achievable makespan of the problem. If all subprob-
lems prove that a schedule can be created with the makespan
less than or equal to Cmax of the master problem, it is proven
that the schedule is optimal. The second condition that can
prove optimality and provide a stopping condition requires
that the Cmax found from the master problem be equal to the
best feasible makespan found so far as defined in Section
3.2.

4 Computational Results
The Benders decomposition model and MIP model were
tested on an Intel Pentium 4 CPU 3.00GHz Hypterthread
Tech with 2 MB cache per core, 1 GB of main memory,
running Red Hat 3.4.6-3. The MIP master problem and
MIP model were implemented with IBM ILOG CPLEX 12.1
and the CP subproblem was implemented with IBM ILOG
Solver 6.7 and IBM ILOG Scheduler 6.7. The TSP solver
used was tsp solve.1 Experiments were run for problem in-
stances of 10, 20, 30, and 40 jobs. For each job size, between
2 and 5 machines were tested. Each of these combinations

1A free TSP solver available online at (http://www.or.
deis.unibo.it/research pages/tspsoft.html) which is written in C++.



had a total of 10 instances for a total of 160 instances. A
time limit of 3 hours was used. Processing times for each
machine job pair were generated from a uniform distribu-
tion between 1 and 100. To obtain setup times that were
sequence dependent and follow the triangular inequality as-
sumption, each job was given two different sets of coordi-
nates on a Cartesian plane for every machine. The setup
times are the Manhattan distances from one job’s coordi-
nates to the other’s. Distances between the second set of
coordinates is used to provide asymmetric setup times. For
example, job 0 and job 1 would be given coordinates χ0a,
χ0b, ψ0a, ψ0b, χ1a, χ1b, ψ1a, and ψ1b. Setup time from job
0 (1) to job 1 (0) would then be |χ0a − χ1a| + |ψ0a − ψ1a|
(|χ0b − χ1b|+ |ψ0b − ψ1b|).

Table 1 shows results comparing the MIP model, CP Ben-
ders, and TSP Benders. In both Benders decomposition
models, cut (C2) was used. For these results, the time un-
til an optimal solution was found and proved were recorded.
Where the solving timed out, 3 hours was used.

The Benders decomposition model’s results, both CP and
TSP versions, are a significant improvement over the MIP
performance. It is clear that the Benders decomposition ap-
proach is capable of solving much larger problems in signif-
icantly shorter run times. The Benders decomposition ap-
proach, with a CP solver, solves up to 20 jobs in the time
limit and the majority of instances of up to 30 jobs. Replac-
ing the CP solver with a TSP solver, the Benders model is
able to increase the number of solvable jobs up to 30 consis-
tently. This is in contrast to the MIP model which is able to
solve only 10 jobs in the 3 hour time limit.

We see that increasing the number of machines has a
greater effect on the performance of the models than increas-
ing the number of jobs. In both Benders models, the master
problem had difficulty solving for increased machines. In
fact, the TSP subproblem is able to solve each subproblem
in milliseconds while the MIP master problem can spend
hours searching for an assignment. The opposite is seen for
the MIP model. The MIP model has difficulties sequencing
large number of jobs on machines and so, in the case where
there are only 2 machines, the MIP model has a very high
runtime for instances of 10 jobs and 2 machines. When the
number of machines is increased to 5, the sequencing prob-
lem is simpler and results in fast runtimes.

Using the Benders decomposition model with the TSP
subproblem, the three different cuts presented in Section 3.3
are tested on the same set of instances for problem sizes of
10, 20, and 30 jobs. The results are presented in table 2.

Table 2 shows that the performance of cut (C2) is the best
overall. In most cases, the difference is not significant, but
there are cases where clear differences are found. Specifi-
cally, (C2) is able to, in a small number of instances, create
a cut that removes an assignment that (C1) would not. This
improved cut reduces the total number of iterations required
and the time needed to solve the problem. In the 20 jobs and
5 machines test case, the average number of iterations for
(C1) is 4.4 while cut (C2) was able to decrease this value to
4. This resulted in a 30 second runtime difference on aver-
age to reduce the runtime by about 25%.

One would then assume that cut (C3), using more in-

formation, would create better cuts. However, the results
showed that cut (C3) performs worst than cut (C2). This is
because cut (C3) created a more difficult master problem to
solve increasing the total solve time per iteration, while not
becoming much tighter than (C2) to reduce the overall num-
ber of iterations. The test case with 20 jobs and 5 machines
shows how (C3) only reduces the number of iterations by
a very small amount, a further 0.2 iterations from cut (C2),
but increases on average by 2 seconds of runtime. Including
into the cut all jobs that were not assigned to a machine ac-
counts for more information, but proves detrimental to the
performance of the Benders model.

In the 30 jobs and 4 machines case, we even see cut
(C3) increasing the number of iterations over cut (C2). This
seems to contradict the fact that (C3) is a tighter cut. The
increase in iteration occurs because some degeneracy exists
in the problem. Varying the cut may lead to different assign-
ments in the Benders master problem with equal objective
functions. In rare instances, it is possible that the other cuts
will lead to the optimal assignment while (C3) leads to an
equivalent master problem that does not extend to a global
solution.

5 Future Work
Though the Benders decomposition approach obtains signif-
icant speed ups, the problem sizes that can be solved are lim-
ited compared to what heuristic models are currently solv-
ing. For larger problems, the Benders decomposition is not
able to complete a single instance of the master problem.
Problem instances of 100 jobs are tested in previous papers
using heuristics and local search (Helal, Rabadi, and Al-
Salem 2006; Rabadi, Moraga, and Al-Salem 2006). Specif-
ically, in work done by Helal et al. (2006), schedules for
problem instances of 100 jobs and 10 machines are found
within minutes. The quality of these schedules is difficult
to assess, given that the optimal solutions are not known.
However, for smaller instances (8 jobs and 4 machines) the
optimal solution was known from the MIP model and the
heuristic used was experimentally shown to have on average
2.5% deviation from optimal.

If optimal solutions are not possible because of large in-
stances, it is clear that heuristic solutions are necessary.
Stopping the Benders program early and using the best
found schedule as shown in Section 3.2 is one approach to
increase the size of problems for which the Benders model
can obtain schedules. However, this approach is only use-
ful if the problems are small enough such that the Benders
model can solve for one complete iteration in a reasonable
time. From our experiments, we found some instances of 40
jobs and 5 machines where solving for one complete itera-
tion took more than one hour. Solve times of the subproblem
are almost instantaneous when the TSP solver is used on all
instances, but the MIP master problem may be intractable
once the size of the problem reaches 50 or more jobs and
5 machines. This means that for problems as large as 100
jobs, the Benders decomposition model is not likely to solve
the master problem within the time limit.

Therefore, we plan to investigate not solving the mas-
ter problem all the way to optimality. This would reduce



MIP CP Benders TSP Benders
n m Avg Runtime # uns. Avg Runtime # uns. Avg Runtime # uns.
10 2 9885.14 9 0.24 0 0.12 0

3 7924.16 7 0.29 0 0.22 0
4 1169.69 1 0.55 0 0.42 0
5 13.59 0 0.56 0 0.45 0

20 2 10800.00 10 9.79 0 1.08 0
3 10800.00 10 6.41 0 2.02 0
4 10800.00 10 239.15 0 53.12 0
5 10800.00 10 509.85 0 122.46 0

30 2 10800.00 10 7997.13 5 2.15 0
3 10800.00 10 3244.75 1 27.85 0
4 10800.00 10 10041.10 2 203.13 0
5 10800.00 10 8804.01 5 750.89 0

40 2 10800.00 10 10800.00 10 4.78 0
3 10800.00 10 10800.00 10 651.30 0
4 10800.00 10 10800.00 10 1538.69 0
5 10800.00 10 10800.00 10 7404.07 5

Table 1: CPU runtime in seconds. Comparison of MIP, CP Benders, and TSP Benders.

(C1) (C2) (C3)
n m Avg Runtime Avg # of Iter Avg Runtime Avg # of Iter Avg Runtime Avg # of Iter
10 2 0.24 2.1 0.12 2.1 0.12 2.1

3 0.25 1.9 0.22 1.9 0.26 1.9
4 0.42 1.8 0.42 1.8 0.40 1.7
5 0.56 1.5 0.45 1.4 0.47 1.4

20 2 1.15 4.5 1.08 4.5 1.09 4.5
3 2.06 2.7 2.02 2.7 2.05 2.7
4 56.87 3.9 53.12 3.9 70.06 3.9
5 153.33 4.4 122.46 4.0 124.30 3.8

30 2 2.17 4.4 2.15 4.4 2.28 4.4
3 29.31 5.4 27.85 5.2 30.52 5.2
4 224.67 4.9 203.13 4.5 222.83 4.7
5 784.39 5.6 750.89 5.3 817.22 5.3

Table 2: CPU runtime in seconds. Comparison of different cuts on the TSP-Benders model.

the effort required in the master problem at producing as-
signments and enable the model to generate feasible sched-
ules faster. Whether the method chosen is to allow the MIP
model to solve with an optimality gap tolerance in mind or
to solve the master problem through some other heuristic is
to be determined.

The change to the Benders decomposition master prob-
lem means that the master problem would no longer act as
a true lower bound. However, if the optimality gap sugges-
tion is the method of choice, it could be guaranteed that the
solution found would be within that chosen gap of optimal.
Experimental results from large instances show that the mas-
ter problem often spends most of time proving optimality or
obtaining optimality with a gap of less than 2%. If the mas-
ter problem was allowed to solve until it has proven it is
within 2% of optimal, the Benders approach would be able
to obtain solutions much faster. What is of concern however,
is whether prematurely solving the master problem with this

gap is detrimental to the quality of a solution if optimality is
not hard to find or prove for some problems.

Another extension to this work is to test the performance
of branch-and-check (Thorsteinsson 2001) on the PMSP
with setup times. Beck (2010) identified that using branch-
and-check, on problems with proportionately larger master
problems in comparison to subproblems, is better than logic-
based Benders. The Benders decomposition could benefit
from solving the subproblem more often and create feasible
schedules earlier.

6 Conclusion
In this paper, we presented a logic-based Benders decom-
position approach to minimize the makespan of an unrelated
parallel machine scheduling problem with sequence and ma-
chine dependent setup times. A MIP model was defined to
solve for the assignment of jobs to machines and produce



a lower bound on the achievable makespan of the problem.
Two subproblems, based on a CP and TSP solver, were im-
plemented to find optimal schedules for the assignment of
jobs on each individual machine. The computational results
show that the cooperation of MIP and TSP can effectively
find optimal solutions. We are able to solve instances four
times larger than what was previously possible using a MIP
formulation found in the literature and obtain optimal so-
lutions on problems of the same size up to five orders of
magnitude faster. Although finding optimal solutions was
the goal of the paper, possible heuristics based on the Ben-
ders decomposition approach are proposed to solve larger
instances.
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