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Abstract The spread constraint enforces a relationship amongst a set of
variables, their mean, and their standard deviation. The Q-bounds consistency
(BC) algorithms that have been formally published and the implementations of
which we are aware all assume a fixed mean value. A sketch of the BC algorithm
with variable mean was proposed, which relies on the continuity property of a
key function used in the fixed mean case. We show that this function may be
piecewise discontinuous, meaning that the extension of the algorithm to the
variable mean case that is suggested in the literature is unsound. We propose a
simple modification of the algorithm that achieves Q-BC with variable mean.

1 Introduction

The spread constraint enforces a given mean µ and maximum standard devi-
ation σ among a set of n variables {X1, . . . , Xn}. It can be defined as follows:

spread({X1, . . . , Xn}, µ, σ),

where σ =
√∑n

i=1(Xi − µ)2/n and µ =
∑n

i=1Xi/n.
Bounds consistency for the spread constraint is defined separately for

continuous and integer domains as follows [4]:
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Definition 1 Let IQD(Xi) = [X lb
i , X

ub
i ] be the rational interval domains of

Xi, and let IZD(Xi) = {X lb
i , . . . , X

ub
i } be the integer interval domains of Xi.

A spread constraint is Q-bounds consistent (resp. Z-bounds consistent) with
respect to the domains of {X1, . . . , Xn} if for all i ∈ {1, . . . , n} and each value
vi ∈ {X lb

i , X
ub
i }, there exists values vj ∈ IQD(Xj) (resp. vj ∈ IZD(Xj)) for all

j ∈ {1, . . . , n} \ {i} such that spread({X1 = v1, . . . , Xn = vn}, µ, σ) holds.

In other words, in Z-BC, the support vector must be integer while in Q-BC
the support vector may not be.

The spread constraint was originally proposed by Pesant et al. [2], where a
Q-BC algorithm that filters the domains of the Xi variables w.r.t µ and σ was
presented. A simplified Q-BC algorithm was presented in Schaus et al. [3,4],
where an extended algorithm that filters the mean variable was proposed. The
Z-BC algorithm was introduced in Schaus et al. [4], demonstrating stronger
filtering than Q-BC. Both of these existing BC algorithms address the case
where µ is fixed. This is a natural restriction in the applications that have
been studied, for example, where a fixed amount of work is to be divided as
evenly as possible amongst a set of workers.

For achieving domain consistency (DC), Pesant [1] proposed a pseudo-
polynomial time filtering algorithm for the fixed mean case, where experiments
were performed on three applications with fixed mean. The generalization to
the variable mean case was discussed in Section 2.2 in Pesant [1, p. 695],
showing that DC with variable mean can be achieved at a computational cost
compared to the fixed mean case.

However, problems where µ is a variable do not seem to have been exten-
sively studied, even though we believe there are compelling applications. For
example, in a scheduling application where the objective is related to flow time
(i.e., the time between when a job enters the system and when it is finished),
it may be important to minimize some combination of the mean flow-time and
its standard deviation: we want to achieve high-throughput but also ensure
some measure of fairness amongst the jobs. Pesant [1,2] also notes that the
variable mean case may arise in staff rostering problems.

The only reference to the variable mean case for BC we have found is
in Schaus et al. [3], where the proposed extension to the fixed-mean Q-BC
algorithm depends on the claim that a particular function is concave and
derivable. We show that this claim is incorrect and may lead to unsound
inference. For the rest of the paper, we deal only with Q-BC and modify the
existing bounds propagation algorithm to properly address the variable mean
case.

2 Recalling spread Propagation with Fixed µ

We first present the propagation algorithm due to Schaus et al. [3,4] for fixed
mean.

Following Schaus et al. [3], we define the necessary notation as follows. Let
I(X) be the set of intervals defined by pairs of consecutive elements of the
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sorted sequence of bounds of the variables {X1, . . . , Xn}, we denote the k-th
interval of I(X) by Ik. Let R(Ik) = {Xi|X lb

i ≥ max(Ik)} be the set of variables
whose values must be greater than Ik. In a number line representation, R(Ik)
are the variables whose values will necessarily lie to the right of Ik. Similarly,
L(Ik) = {Xi|Xub

i ≤ min(Ik)} is the set of variables that lie to the left of Ik.
We let M(Ik) be the remaining variables not in R(Ik) or L(Ik) and let m =
|M(Ik)|. We further let ES(Ik) be the sum of the assigned Xi values at their
extremes in R(Ik) and L(Ik), i.e., ES(Ik) =

∑
Xi∈R(Ik)

X lb
i +

∑
Xi∈L(Ik)

Xub
i .

Let q = nµ =
n∑

i=1

Xi. It follows that nσ2 =
n∑

i=1

X2
i −

q2

n . We can compute

V (Ik) = [ES(Ik) + (m)min(Ik), ES(Ik) + (m)max(Ik)], which is the interval
of possible q values related to Ik. Let Iq ∈ I(X) such that q ∈ V (Iq). That
is, Iq is the interval that contains q. To find the minimum consistent value
of σ, all the variables in R(Iq) should be assigned to their minimum value,
X lb

i . Similarly, all the variables in L(Iq) should be assigned to their maximum
value, Xub

i . These are, in both cases, the domain values closest to the mean,
which, as noted, lies in the interval Iq. All the remaining unassigned variables
in M(Iq) must be assigned the value, v, to satisfy the mean, after all the Xi

variables in both R(Iq) and L(Iq) are assigned to their appropriate extreme
value. This means we need to satisfy mv + ES(Iq) = q. Therefore we have
v = q−ES(Iq)

m , and

nσ2 =
∑

Xi∈R(Iq)

(X lb
i )2 +

∑
Xi∈L(Iq)

(Xub
i )2 +mv2 − q2

n
(1)

=
∑

Xi∈R(Iq)

(X lb
i )2 +

∑
Xi∈L(Iq)

(Xub
i )2 +

(q − ES(Iq))2

m
− q2

n
.

When the mean is fixed, µlb = µub, and q is a constant. We can locate
the interval Iq such that V (Iq) contains q and classify all the Xi variables to
the sets R(Iq), L(Iq), and M(Iq). We restrict our analysis to R(Iq), as the
derivation for M(Iq) can be reduced to the same procedure as for the case
R(Iq), and the derivation for L(Iq) is symmetric.

Pruning Xub
i ∀ Xi ∈ R(Iq). The pruning of Xi has to respect the current

upper bound on the standard deviation variable. Let σshift be the standard
deviation that results from adding d to X lb

i , where d > 0. Let dmax be the
shift amount in X lb

i such that σshift = σub. Any shift larger than dmax will
result in σshift > σub, which renders the assignment inconsistent. Therefore,
we can prune Xi using Xi = [X lb

i ,min(X
lb
i + dmax, X

ub
i )]. Shifting X lb

i by d
shifts v to q−(ES(Iq)+d)

m = v − d
m . From Equation 1 we have

nσ2
shift =

∑
Xj∈L(Iq)

(Xub
i )2+

∑
Xj∈R(Iq),Xj 6=Xi

(X lb
i )2+(X lb

i +d)2+m(v− d

m
)2− q

2

n
.
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Therefore, nσ2
shift is a function of d that can be written as follows:

nσ2
shift(d) = d2(1 +

1

m
) + 2d(X lb

i − v) + nσ2. (2)

To solve for dmax, let Equation 2 equal to nσ2
ub and solve for d, we have

nσ2
shift(d) = d2(1 +

1

m
) + 2d(X lb

i − v) + nσ2 = nσ2
ub.

d2(1 +
1

m
) + 2d(X lb

i − v) + nσ2 − nσ2
ub = 0.

Therefore, using the quadratic formula,

dmax = −b′ +
√
b′2 − ac
a

, (3)

where a = 1 + 1
m , b = 2(X lb

i − v), c = nσ2 − nσ2
ub, b

′ = b
2 .

Note that if dmax > q − minV (Iq), the v value does not reside in Iq. In
this case, dmax is not valid and it needs to be calculated recursively through
the intervals. We refer to Schaus [3,4] for further details.

3 A Problem with Propagation with a Variable µ

In the variable mean case, for each Xi, we have to compute qmax ∈ [qlb =
nµlb, q

ub = nµub] such that dmax is maximized, as different q ∈ [qlb, qub] re-
sult in different dmax. We can only take the largest dmax, as any other value
may result in invalid pruning and thus potentially remove solutions. After
qmax is computed, the propagation on X is performed in the same way as the
fixed-mean case with qmax. In the original paper [3, p. 72] dmax is expressed
as a function of q and it is stated that since dmax(q) “can be shown to be
concave and derivable, one can search [for] a q0 such that dmax is maximum:
∂dmax(q)

∂q |q=q0 = 0.” If q0 does not reside within [qlb, qub], we can take the
maximum of qlb and qub, as dmax(q) is concave.

The above statement is incorrect as it assumes that dmax(q) is continuous
throughout the interval [qlb, qub]. Since [qlb, qub] can be spread across different
V (Ii)s and thus be divided by different values of a = 1 + 1

m , dmax(q) may be
divided into discontinuous intervals. Since dmax(q) may be different for each
discontinuous interval, using a single dmax(q) may result in errors as we may
not find the largest dmax.

We first show that the dmax(q) function is concave, derivable at each inter-
val but may not be piecewise continuous. In such a case, the partial derivative
with respect to q is not well-formed.

Lemma 1 dmax(q) is concave, derivable within each interval but may not be
piecewise continuous.
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Proof In order to determine the concavity of dmax(q), we first reason on the
signs of coefficients of dmax(q). From Equation (3), since a = 1+ 1

m , we know
that a > 0. Since X lb

i − v ≥ 0, it follows that b = 2(X lb
i − v) ≥ 0. c ≤ 0 as

nσ2
shift(d) ≤ nσub.
We discuss the two cases for c as follows:

– c = 0: We have dmax(q) = (−b′+|b′|)
a = 0. This means dmax is linear and

thus concave.
– c < 0: From Equation (2), we know that nσ2

shift(d) ≥ 0 and it is convex.
Therefore c = nσ2

shift(d)−nσub is also convex. Since c < 0, c is convex and
it resides below 0. As a > 0, ac remains convex and ac < 0. Multiplying a
function by −1 reflects it upon the x-axis, so −ac is concave and −ac > 0.
Adding a constant positive value only shifts the function upwards. Thus,
since b′2 ≥ 0, b′2 − ac must also be concave. It follows that (b′2 − ac) ≥ 0.
Taking the square root of a concave function only scales the graph at each
point, but it remains continuous and concave. Thus,

√
(b′2 − ac) ≥ 0. Last,

adding a constant does not change the concavity, thus, −b′ +
√
(b′2 − ac)

maintains its concavity and continuity.
However, for each interval, the expression −b′ +

√
(b′2 − ac) might be di-

vided by a different value of a, as a = 1+ 1
m for m 6= 0. This means that for

any two consecutive intervals with different m, dmax(q) is discontinuous,
i.e., the function is discontinuous at the boundary of the intervals j and
j + 1 when mj 6= mj+1, and continuous when mj = mj+1.

Figure 1 shows an example of the dmax(q) function. Variables and domains
are the same as Example 1 in Schaus et al. [3], and we set the upper bound
σub =

√
(8/3) (different notation for the upper bound, πmax

1 , was used in the
original paper with the relationship πmax

1 = nσ2
ub). As each variable results in

a different dmax(q) function, Figure 1 shows the function of variable X1. It is
clear that only intervals 2 and 3 are continuous at their boundaries. In addition,
the partial derivative of the dmax(q) function with respect to q is never zero.
Therefore, the algorithm needs to check the values on the boundaries of the
intervals.

As a result, the original algorithm for computing dmax [3, p. 72] cannot be
implemented, as dmax(q) is not a continuous function.

4 Fixing the Propagation with a Variable µ

Fortunately, we can fix the propagation algorithm with a straightforward mod-
ification. Unlike the fixed mean case where all the Xi variables share the same
q, we have to calculate different qmax values for each Xi. As each individual
interval represents a continuous concave function, each interval is derivable
within itself. Therefore, we have to find the maximum dmax and the corre-
sponding qmax in each interval. After qmax is determined, we can use it to
propagate Xi as for the µlb = µub case.
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Fig. 1: The dmax(q) function of variable X1 of the example presented in Schaus
et al. [3]. The x-axis represents q and the y-axis represents dmax. The dmax(q)
function is piecewise discontinuous. The qmax value can be found by executing
Algorithm 1: Since the dmax(q) function is increasing for all the intervals, we
have to compute q0 for each of the intervals. Since q0 /∈ [qlbj , q

ub
j ],∀j, we have

qmax = qub4 = 18.

Without loss of generality, assume that qlb and qub are already consistent
with respect to all the Xi variables and σ. The details on filtering q, i.e., the
filtering of the mean variable, are presented in Schaus et al. [3]. Let qlbj and
qubj be the smallest and largest q values, i.e., end points of interval Ij . The
algorithm for computing dmax for one variable is presented in Algorithm 1.
Note that X and I(X) are the sets of all the variables and intervals.

To search for the maximum possible dmax, we iterate through each interval
and update the qmax value. We use an additional variable dir to keep track
of the direction of the dmax(q) function at the current interval. If dmax(q) is
entirely decreasing in the current interval, we are sure that q0 is outside of all
the intervals afterwards. Therefore, we can set qmax to be either the current
qmax or qlbj , depending which one gives a higher dmax value. If dmax is not
entirely decreasing, we need to check if the current interval contains q0 where
∂dmax(q)

∂q |q0 = 0. The two possibilities are as follows.

– Case 1: The first derivative q0 resides in the current interval, i.e., q0 ∈
[qlbj , q

ub
j ]. In this case, this interval is the only interval that contains its

first derivative. As dmax(q) is concave, all the intervals to the left of this
interval have maximum values at their upper bounds qubj , and similarly, all
the intervals to the right of this interval have maximum values at their lower
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Algorithm 1 FindDMaxV arMean(X, I(X))

Data: X, I(X)
Results: dmax s.t. σshift = σub with Xub

i = Xlb
i + dmax

Initialization: qmax = qlb1 , dir = up
if dmax(qlb1 ) > dmax(qub1 ) then
dir = down

end if
for 1 ≤ j ≤ |I(X)| do

if dir = down then
qmax = qmax if dmax(qmax) > dmax(qlbj ), else qmax = qlbj

else
compute q0
if q0 ∈ [qlbj , q

ub
j ] then

qmax = qmax if dmax(qmax) > dmax(q0), else qmax = q0

dir = down
end if
qmax = qmax if dmax(qmax) > dmax(qubj ), else qmax = qubj

end if
end for
dmax = FindDMax(X, I(qmax))

bounds qjlb. In other words, since we already exclude the case that dmax(q)
is decreasing, qmax is equal to either the current qmax or q0, depending on
which one gives a higher dmax value.

– Case 2: The first derivative q0 does not reside in the current interval, which
means that dmax(q) is still going upwards in the current interval. Therefore,
we can set qmax to be either the current qmax or qubj , depending which one
gives a higher dmax value.

Since dmax represents the maximum shift that can occur to X lb
i . By using

q values other than qmax, the resulting dmax value may be less than the true
value. This means that pruning Xub

i may remove a feasible or optimal solution.
The complexity to enforce bounds consistency with fixed mean isO(n log(n))

time, as dmax is computed in O(log(n)) time for each of the n variables [4].
The complexity for the variable mean case thus increases to O(n2) time, since
qmax is computed in O(n) time.

5 Conclusion and Future Work

We have presented a propagation algorithm for the spread constraint with a
variable mean. Specifically, we have shown the piecewise discontinuous prop-
erty of the specific function used to derive bounds reduction. Our proposed
algorithm ensures Q-BC, which cannot be guaranteed with the straightforward
extension to the existing algorithm suggested in the literature.

One interesting extension is to develop an algorithm to achieve Z-BC for
the variable mean case. It is also valuable to implement the proposed algorithm
and solve real world applications with variable mean.
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